GOALI: Fundamental Approaches to Atomic Layer Etching
目标:原子层蚀刻的基本方法
基本信息
- 批准号:1609973
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL ABSTRACT:This project will develop the science and technology for etching metallic films one atomic later at a time. This know-how is most important in the field of memory devices, specifically based on magnetic principles used in computers, digital cameras, mobile phones and other similar devices. These devices based on the technology developed should demonstrate lower power consumption, smaller sizes, and lower cost of production compared to the other modern alternatives. However, to achieve this goal, very high level of control over making very thin metallic layers is necessary. The thickness of these layers must be highly reproducible to ensure reliable memory performance. For the metal components required, it is difficult to deposit them by traditional methods; however, it is possible to deposit relatively thick layers of these materials and then partially etch them away with the atomic layer precision. In addition to the obvious advantages of capabilities to make simpler, cheaper, faster, and more reliable memory devices this work can affect a wide variety of the systems that are at the core of national interests, including aerospace and military systems, image storage and analysis, data logging and many other applications. The combination of university and industrial research in this grant will offer special educational and training opportunities to the students and facilitate this development to reach the marketplace more quickly.TECHNICAL ABSTRACT:This GOALI project will target new approaches for removal of deposited metals in a layer-by-layer manner through atomic layer etching (ALEt). One of the prime targets for potential application of ALEt is in the field of Magnetic Random Access Memory (MRAM). Atomic Layer Etching (ALEt) requires reacting a metallic surface with a precursor molecule that saturates the surface and reduces the binding of the first layer of atoms to the bulk. A second input, be it chemical, energetic, or some combination of the two, will cause the first layer of metal atoms (with their associated ligands) to desorb. The second layer of atoms will now be exposed to the saturating precursor, followed by the desorption steps. As the process proceeds, the atoms will be removed from the surface layer by layer. Fe, Co, Ni, and Pt thin films deposited on a Si substrate will be used as the initial targets. The experimental approach will take two tracks. First, model systems will be designed, modeled, and tested. This approach will build on the understanding obtained through studying atomic layer deposition (ALD). A suite of surface characterization techniques will be coupled with high-resolution microscopies to understand these processes at the atomic level. In the second approach, work with American Air Liquide will study the ALEt process in manufacturing systems including temperature controlled wafer chucks, mass flow controllers for the reactants, and plasma sources. These systems will also be equipped so that the ALEt process can be monitored in operando. A model processing system will be constructed at the University of Delaware so that the composition and chemistry of the surface can be studied at any point in the process, in-situ studies. At the end of the proposal, working processes for various materials, including those of importance in MRAM application, will be developed. A deeper understanding of the physical components of the ALEt process will also be achieved.
非技术摘要:该项目将开发一次刻蚀一个原子的金属薄膜的科学技术。这种技术在存储设备领域最为重要,特别是基于计算机、数码相机、移动电话和其他类似设备中使用的磁性原理。与其他现代替代品相比,基于所开发技术的这些设备应表现出更低的功耗、更小的尺寸和更低的生产成本。然而,为了实现这一目标,需要对制造非常薄的金属层进行非常高水平的控制。这些层的厚度必须具有高度可重复性,以确保可靠的存储性能。对于所需的金属部件,用传统方法很难沉积;然而,可以沉积相对较厚的这些材料层,然后以原子层精度将它们部分蚀刻掉。 除了制造更简单、更便宜、更快和更可靠的存储设备的能力的明显优势之外,这项工作还可以影响处于国家利益核心的各种系统,包括航空航天和军事系统、图像存储和分析、数据记录和许多其他应用。这笔赠款中大学和工业研究的结合将为学生提供特殊的教育和培训机会,并促进这一发展更快地进入市场。技术摘要:该 GOALI 项目将针对去除层中沉积金属的新方法 -通过原子层蚀刻(ALEt)逐层方式。 ALEt 潜在应用的主要目标之一是磁性随机存取存储器 (MRAM) 领域。原子层蚀刻 (ALEt) 需要使金属表面与前体分子发生反应,使表面饱和并减少第一层原子与主体的结合。第二个输入,无论是化学输入、能量输入还是两者的某种组合,都会导致第一层金属原子(及其相关配体)解吸。现在,第二层原子将暴露于饱和前体,然后进行解吸步骤。随着过程的进行,原子将从表面一层一层地去除。沉积在 Si 基板上的 Fe、Co、Ni 和 Pt 薄膜将用作初始靶材。实验方法将采取两条轨道。首先,将设计、建模和测试模型系统。这种方法将建立在通过研究原子层沉积(ALD)获得的理解之上。一套表面表征技术将与高分辨率显微镜相结合,以在原子水平上了解这些过程。在第二种方法中,与美国液化空气公司合作将研究制造系统中的 ALEt 工艺,包括温控晶圆卡盘、反应物质量流量控制器和等离子体源。还将配备这些系统,以便可以实时监控 ALEt 过程。特拉华大学将建造一个模型处理系统,以便可以在过程中的任何点进行现场研究,研究表面的成分和化学成分。在提案结束时,将开发各种材料的工作流程,包括 MRAM 应用中重要的材料。还将对 ALEt 过程的物理组件有更深入的了解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
S. Ismat Shah其他文献
Modification of graphene oxide film properties using KrF laser irradiation
- DOI:
10.1039/c8ra00097b - 发表时间:
2018-04 - 期刊:
- 影响因子:3.9
- 作者:
Somayeh Mortazavi;Mahmoud Mollabashi;Rasoul Barri;Kevin Jones;John Q. Xiao;Robert L. Opila;S. Ismat Shah - 通讯作者:
S. Ismat Shah
Hierarchical rhombus-shaped ZnO array: Synthesis, formation mechanism and solar cell application
分层菱形ZnO阵列:合成、形成机制及太阳能电池应用
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:6.2
- 作者:
Liangdong Feng;Hongyan Ding;S. Ismat Shah;Chaoying Ni - 通讯作者:
Chaoying Ni
Electrical and optical properties of point defects in ZnO thin films
ZnO薄膜中点缺陷的电学和光学性质
- DOI:
10.1088/0022-3727/45/19/195104 - 发表时间:
2012-05-16 - 期刊:
- 影响因子:0
- 作者:
M. Can;S. Ismat Shah;M. Doty;C. Haughn;T. Fırat - 通讯作者:
T. Fırat
Experimental observations of field-dependent activation of core and surface spins in Ni-ferrite nanoparticles
镍铁氧体纳米颗粒中核心和表面自旋场依赖性激活的实验观察
- DOI:
10.1088/0953-8984/20/19/195208 - 发表时间:
2008-04-11 - 期刊:
- 影响因子:0
- 作者:
A. Ceylan;S. K. Hasanain;S. Ismat Shah - 通讯作者:
S. Ismat Shah
Effect of Nb and Sc doping on the phase transformation of sol-gel processed TiO2 nanoparticles.
Nb 和 Sc 掺杂对溶胶-凝胶处理的 TiO2 纳米颗粒相变的影响。
- DOI:
10.1166/jnn.2008.239 - 发表时间:
2008-05-01 - 期刊:
- 影响因子:0
- 作者:
A. Ahmad;S. Buzby;C. Ni;S. Ismat Shah - 通讯作者:
S. Ismat Shah
S. Ismat Shah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('S. Ismat Shah', 18)}}的其他基金
Collaborative Research: Monolithic on-chip resonant cavity isolators for photonic integrated circuits
合作研究:用于光子集成电路的单片片上谐振腔隔离器
- 批准号:
1231392 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
US-Pakistan Workshop on Environmental Nanotechnology & Ethics, Lahore, Pakiston, March 28-March 31, 2011
美国-巴基斯坦环境纳米技术研讨会
- 批准号:
1063955 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NUE: Connecting Nanotechnology and Alternative Energy Approaches through Undergraduate Education in Engineering
NUE:通过工程本科教育将纳米技术和替代能源方法联系起来
- 批准号:
0939283 - 财政年份:2009
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
US-EGYPT Cooperative Research: Polycyclic Aromatic Hydrocarbon Degradation by Nanostructured TiO2 Thin Films
美国-埃及合作研究:纳米结构TiO2薄膜降解多环芳烃
- 批准号:
0809174 - 财政年份:2008
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
IGERT: Sustainable Energy from Solar Hydrogen
IGERT:来自太阳能氢的可持续能源
- 批准号:
0549399 - 财政年份:2006
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
US-Pakistan Workshop "Thin Film and Nanostructured Materials" October 2006, Islamabad, Paksitan
美国-巴基斯坦研讨会“薄膜和纳米结构材料”2006 年 10 月,巴基斯坦伊斯兰堡
- 批准号:
0610277 - 财政年份:2006
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
ACT/SGER: Metastable Titania-Germanium (Ti02-Ge) Nanocomposites for Photovoltaic Applications
ACT/SGER:用于光伏应用的亚稳态二氧化钛-锗 (Ti02-Ge) 纳米复合材料
- 批准号:
0441619 - 财政年份:2004
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
US-Egypt Cooperative Research: Preparation of Precious Metals Nanoparticles within Mesoporous Titania from Industrial Wastes
美埃合作研究:利用工业废物制备介孔二氧化钛贵金属纳米粒子
- 批准号:
0316664 - 财政年份:2003
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NIRT: Semiconductor Metal Oxide Nanoparticles for Visible Light Photocatalysis
NIRT:用于可见光光催化的半导体金属氧化物纳米颗粒
- 批准号:
0210284 - 财政年份:2002
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
US-Pakistan Cooperative Research: Magnetic Nanoparticle Synthesis and Characterization
美巴合作研究:磁性纳米粒子的合成和表征
- 批准号:
0138151 - 财政年份:2002
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于空间基本变量的城市SDGs多尺度空间型监测机理与方法
- 批准号:42271289
- 批准年份:2022
- 资助金额:50 万元
- 项目类别:面上项目
具备多尺度调频能力的电解制氢负荷基本原理及实现方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
长寿命基本粒子理论模型和探测方法的研究
- 批准号:
- 批准年份:2020
- 资助金额:60 万元
- 项目类别:面上项目
面向智能建造的3D打印混凝土配筋结构基本性能与设计方法
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
机器人鸟“前进”运动控制神经信息传导通路及反馈研究
- 批准号:61903230
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Chemical Approaches for Interrogating Fundamental Biomedical Processes
用于研究基本生物医学过程的化学方法
- 批准号:
10552375 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Fundamental studies and novel approaches enabling the generation and characterization of ultrasound and photoacoustic contrast to probe the structure and function of cells, biomaterials and biological systems
基础研究和新方法能够产生和表征超声波和光声对比度,以探测细胞、生物材料和生物系统的结构和功能
- 批准号:
DGDND-2022-04143 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
DND/NSERC Discovery Grant Supplement
解剖学的方法に基づく日本列島の各時代人類集団の正確な身長推定
基于解剖学方法准确估算日本列岛各个时代人口的身高
- 批准号:
22K01005 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Fundamental studies and novel approaches enabling the generation and characterization of ultrasound and photoacoustic contrast to probe the structure and function of cells, biomaterials and biological systems
基础研究和新方法能够产生和表征超声波和光声对比度,以探测细胞、生物材料和生物系统的结构和功能
- 批准号:
RGPIN-2022-04143 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Fundamental studies and novel approaches enabling the generation and characterization of ultrasound and photoacoustic contrast to probe the structure and function of cells, biomaterials and biological systems
基础研究和新方法能够产生和表征超声波和光声对比度,以探测细胞、生物材料和生物系统的结构和功能
- 批准号:
DGDND-2022-04143 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
DND/NSERC Discovery Grant Supplement