Collaborative Research: Probing and Controlling Binding Structure and Electron Transport in Molecular Electronic Devices--A Coordinated Computational and Experimental Study

合作研究:探测和控制分子电子器件中的结合结构和电子传输——协调计算和实验研究

基本信息

  • 批准号:
    1609788
  • 负责人:
  • 金额:
    $ 17.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Abstract:Non-Technical:Molecular electronics started with the idea of wiring an individual molecule to two metal electrodes, called single-molecule junctions, as an analogy of single electronic components in commercial microelectronic devices to overcome the limit of famous Moore's prediction. In a single molecular junction, perhaps the most elusive factor that influences the electron transport properties lies in the molecule-electrode contact interfaces. Despite continuous experimental achievements and the conceptual simplicity of molecular electronic devices, challenges for their theoretical understanding of the correlation between electron transport and molecular binding structures are still unresolved. Therefore, probing and controlling the structure and dynamics of single-molecule junctions and consequently controlling the molecular transport of these junctions are critical to the development of this field. The project will integrate molecular simulations for the self-assembly and nanocontact dynamics at surface and interface, and experimental mechanics and electron transport measurements of single-molecule junctions. The project will provide a deep understanding of many transition phenomena observed in molecular force and conductance measurements. If successful, the research will have tremendous impact on molecular electronics community and many other areas, such as energy research and molecular force spectroscopy. The education and outreach objective of this proposal is to tightly integrate the research efforts and results with graduate, undergraduate, and K-12 education and to globally disseminate both research and the education outcomes.Technical:Although the electrical conductance and mechanical properties of single-molecule junctions have achieved significant progress over the past decade, challenges of a detailed understanding of molecular binding structures and electron transport, and the structure-force-conductance correlations, are still unresolved. This research will develop a combined molecular simulation and scanning probe microscope break-junction technique to probe and control the structure and dynamics in molecular electronics devices: (1) Performing molecular simulations by using as close as possible the experimental parameters, dynamics of electrode and realistic atomic interactions to understand the binding structure and force measurement in scanning probe experiment; (2) Developing a dual-mode feedback system with AC-coupled high speed amplifier at radio frequency to capture the key transitions of molecular binding sites that induce conductance changes. The experimental data at nanosecond (ns) timescale will be directly compared with molecular simulation results; (3) Using the coordinated molecular simulation and scanning probe break-junction experiment to probe the structure and dynamics of selected benchmark systems under different mode trainings. Multi-variable force-conductance two-dimensional cross-correlation histogram analyses for the force and conductance traces will be performed in experiments and simulations, and the distinct stable configurations of molecular junctions will be identified. The coordinated computational and experimental research project will also provide an interdisciplinary research for students in materials, mechanics, chemistry, electronics, and computational materials science.
摘要:非技术性:分子电子学始于将单个分子连接到两个金属电极(称为单分子结)的想法,类似于商业微电子设备中的单个电子元件,以克服著名的摩尔预测的限制。在单个分子结中,影响电子传输特性的最难以捉摸的因素可能在于分子-电极接触界面。尽管不断取得实验成果并且分子电子器件的概念简单,但对电子传输和分子结合结构之间相关性的理论理解的挑战仍未解决。因此,探测和控制单分子连接的结构和动力学,从而控制这些连接的分子运输对于该领域的发展至关重要。该项目将整合表面和界面自组装和纳米接触动力学的分子模拟,以及单分子结的实验力学和电子传输测量。该项目将深入了解分子力和电导测量中观察到的许多转变现象。如果成功,该研究将对分子电子学界和许多其他领域产生巨大影响,例如能源研究和分子力谱学。该提案的教育和推广目标是将研究工作和成果与研究生、本科生和 K-12 教育紧密结合,并在全球范围内传播研究和教育成果。分子连接在过去十年中取得了重大进展,但详细理解分子结合结构和电子传输以及结构-力-电导相关性的挑战仍未解决。本研究将开发一种结合分子模拟和扫描探针显微镜断结技术来探测和控制分子电子器件的结构和动力学:(1)使用尽可能接近的实验参数、电极动力学和现实进行分子模拟。原子相互作用,以了解扫描探针实验中的结合结构和力测量; (2)开发具有射频交流耦合高速放大器的双模式反馈系统,以捕获引起电导变化的分子结合位点的关键转变。纳秒(ns)时间尺度的实验数据将直接与分子模拟结果进行比较; (3)利用协调分子模拟和扫描探针断裂连接实验来探究所选基准系统在不同模式训练下的结构和动力学。将在实验和模拟中对力和电导迹线进行多变量力-电导二维互相关直方图分析,并将识别分子连接的独特稳定构型。协调的计算和实验研究项目还将为材料、力学、化学、电子和计算材料科学的学生提供跨学科研究。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Metallo‐Helicoid with Double Rims: Polymerization Followed by Folding by Intramolecular Coordination
具有双环的金属螺旋:聚合,然后通过分子内配位折叠
  • DOI:
    10.1002/ange.202010696
  • 发表时间:
    2020-11-18
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guangqiang Yin;S. K;apal;apal;Chung;Heng Wang;Jianxiang Huang;Shu‐Ting Jiang;Tan Ji;Yu Yan;S;ra Khalife;ra;Ruhong Zhou;Libin Ye;Bingqian Xu;Hai‐Bo Yang;M. Nieh;Xiaopeng Li
  • 通讯作者:
    Xiaopeng Li
Hierarchical Self-Assembly of Nanowires on the Surface by Metallo-Supramolecular Truncated Cuboctahedra
金属超分子截断立方八面体表面纳米线的分层自组装
  • DOI:
    10.1021/jacs.1c00625
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    15
  • 作者:
    Wang, Heng;Wang, Kun;Xu, Yaping;Wang, Wu;Chen, Shaohua;Hart, Matthew;Wojtas, Lukasz;Zhou, Li;Gan, Lin;Yan, Xuzhou;et al
  • 通讯作者:
    et al
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bingqian Xu其他文献

The molecular basis of interaction domains of full-length PrP with lipid membranes.
全长 PrP 与脂质膜相互作用域的分子基础。
  • DOI:
    10.1039/c9nr02735a
  • 发表时间:
    2019-06-27
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Yangang Pan;Yangang Pan;Bin Wang;Bin Wang;R. Reese;Bingqian Xu
  • 通讯作者:
    Bingqian Xu
A Novel Highly Integrated SPM System for Single Molecule Studies
用于单分子研究的新型高度集成 SPM 系统
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Fan Chen;Jianfeng Zhou;Guojun Chen;Bingqian Xu
  • 通讯作者:
    Bingqian Xu
Fibrinogen clot induced by gold-nanoparticle in vitro.
金纳米颗粒体外诱导纤维蛋白原凝块。
  • DOI:
    10.1166/jnn.2011.3571
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guojun Chen;N. Ni;Jianfeng Zhou;Yen;B. Wang;Z. Pan;Bingqian Xu
  • 通讯作者:
    Bingqian Xu
A modular platform to generate functional sympathetic neuron-innervated heart assembloids
生成功能性交感神经元支配的心脏组合体的模块化平台
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nadja Zeltner;H. Wu;Kenyi Saito;Xin Sun;Ming Song;Tripti Saini;Courtney Grant;Christina James;Kimata Thomas;Yohannes Abate;Elizabeth Howerth;Peter Kner;Bingqian Xu
  • 通讯作者:
    Bingqian Xu
Measurements of contact specific low-bias negative differential resistance of single metalorganic molecular junctions.
单个金属有机分子结的接触特定低偏置负微分电阻的测量。
  • DOI:
    10.1039/c3nr01284k
  • 发表时间:
    2013-06-13
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Jianfeng Zhou;S. Samanta;Cun;J. Locklin;Bingqian Xu
  • 通讯作者:
    Bingqian Xu

Bingqian Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bingqian Xu', 18)}}的其他基金

Probe and Control Opto-Electronic Transport in Single Molecular Junction Devices
探测和控制单分子结器件中的光电传输
  • 批准号:
    2010875
  • 财政年份:
    2020
  • 资助金额:
    $ 17.82万
  • 项目类别:
    Standard Grant
Electronic transport in DNA-based single molecular devices
基于 DNA 的单分子器件中的电子传输
  • 批准号:
    1231967
  • 财政年份:
    2012
  • 资助金额:
    $ 17.82万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER:Studying lignocellulosic fine structure and its dynamics in enzymatic hydrolysis of biomass using molecule-recognizing AFM and computational modeling
合作研究:EAGER:使用分子识别 AFM 和计算模型研究木质纤维素精细结构及其在生物质酶水解中的动力学
  • 批准号:
    1139057
  • 财政年份:
    2011
  • 资助金额:
    $ 17.82万
  • 项目类别:
    Standard Grant
Controlling, modulating, and monitoring the electronic and mechanical properties of molecular junction devices at single-molecule level
在单分子水平上控制、调节和监测分子连接器件的电子和机械性能
  • 批准号:
    0823849
  • 财政年份:
    2008
  • 资助金额:
    $ 17.82万
  • 项目类别:
    Standard Grant

相似国自然基金

基于光增强新型类皮肤有机半导体复合器件的接近探测研究
  • 批准号:
    62375046
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
适用于浅海环境多AUV网络化作业的探测通信一体化技术研究
  • 批准号:
    62301136
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
对抗环境下基于博弈论的雷达目标探测波形优化研究
  • 批准号:
    62301577
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向海洋探测的微光纤海水温盐压传感器多方法协同的多参量解调研究
  • 批准号:
    62375248
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于多通道菲索干涉仪的大气风温探测激光雷达遥感方法研究
  • 批准号:
    42374182
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412550
  • 财政年份:
    2024
  • 资助金额:
    $ 17.82万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412551
  • 财政年份:
    2024
  • 资助金额:
    $ 17.82万
  • 项目类别:
    Standard Grant
Collaborative Research: Probing and Controlling Exciton-Plasmon Interaction for Solar Hydrogen Generation
合作研究:探测和控制太阳能制氢的激子-等离子体激元相互作用
  • 批准号:
    2230729
  • 财政年份:
    2023
  • 资助金额:
    $ 17.82万
  • 项目类别:
    Continuing Grant
Collaborative Research: PM: High-Z Highly Charged Ions Probing Nuclear Charge Radii, QED, and the Standard Model
合作研究:PM:高阻抗高带电离子探测核电荷半径、QED 和标准模型
  • 批准号:
    2309273
  • 财政年份:
    2023
  • 资助金额:
    $ 17.82万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: PM:High-Z Highly Charged Ions Probing Nuclear Charge Radii, QED, and the Standard Model
合作研究:RUI:PM:高阻抗高带电离子探测核电荷半径、QED 和标准模型
  • 批准号:
    2309274
  • 财政年份:
    2023
  • 资助金额:
    $ 17.82万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了