Collaborative Research: Propagation of Dissipation: Stochastic Stabilization in Finite and Infinite Dimensions
合作研究:耗散传播:有限和无限维中的随机稳定
基本信息
- 批准号:1613337
- 负责人:
- 金额:$ 22.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-06-15 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Randomness is everywhere in modern science and technology. It underlies models of air turbulence, chemical dynamics, and algorithms for big data. Such models are often high dimensional or even infinite dimensional, as in the case of turbulence. Central to understanding these systems is understanding the way both energy and randomness are spread by nonlinear interactions in the dynamics. This research project explores a number of directions that exploit both the geometric and algebraic structures of such systems to better understand these basic transport phenomena. The investigators will work to understand how such interactions can lead to stabilization in systems that are unstable in the absence of randomness. The project includes research participation by graduate, undergraduate, and high-school students. At the high school level, the investigators will also work to keep the students' teachers connected with cutting-edge mathematics, helping them to be more effective and better informed as teachers. In addition, videos chronicling the student research efforts will be made in collaboration with a center for documentary films to further disseminate the experience and broaden the project's impact. This collaborative research project in stochastic analysis and dynamics will explore the propagation of noise and dissipation in stochastic systems and their effects on the existence and structure of stationary states. There is particular emphasis on effects that occur in stochastic partial differential equations, the ability of noise to stabilize unstable systems, and non-equilibrium steady-states in forced systems. Many of the equations to be investigated are physical models (e.g. from fluid mechanics or non-equilibrium statistical physics) while other equations to be studied serve as examples that aid in understanding the underlying mechanisms producing stability or instability in such systems. This work will build on the investigators' previous work in designing Lyapunov functions in the finite-dimensional setting of stochastic ordinary differential equations (SODEs) and establishing practical methods for proving unique ergodicity and convergence to equilibrium in both the finite-dimensional setting of SODEs as well as the infinite-dimensional setting of SPDEs. While the research is anticipated to have immediate implications in fluid mechanics and statistical physics, the techniques that will result from studying such systems will be applicable to a wide family of problems in other areas, such as biology, engineering, physics, and finance, which regularly employ stochastic ordinary and partial differential equations as modeling tools.
在现代科学和技术中,随机性无处不在。它是大数据的空气湍流,化学动力学和算法模型的基础。这种模型通常是高维甚至无限的尺寸,例如湍流。理解这些系统的核心是了解动态中非线性相互作用传播能量和随机性的方式。该研究项目探讨了许多方向,这些方向利用了此类系统的几何和代数结构,以更好地理解这些基本运输现象。研究人员将努力了解这种相互作用如何导致在没有随机性的情况下不稳定的系统中稳定。该项目包括研究生,本科和高中生的研究参与。 在高中,调查人员还将努力使学生的老师与先进的数学建立联系,从而帮助他们更加有效,更了解教师。此外,还将与纪录片中心合作制作记载学生研究工作的视频,以进一步传播体验并扩大项目的影响。这项在随机分析和动态方面的协作研究项目将探讨随机系统中噪声和耗散的传播及其对固定状态的存在和结构的影响。特别强调了随机部分微分方程,噪声稳定不稳定系统的能力以及强制系统中的非平衡稳态。要研究的许多方程是物理模型(例如,来自流体力学或非平衡统计物理学),而要研究的其他方程式作为示例,有助于理解在此类系统中产生稳定性或不稳定的潜在机制。这项工作将基于调查人员以前在设计Lyapunov功能的工作中,以随机的普通微分方程(SODE)的有限维度设置,并建立实用方法,以证明在SODES的有限尺寸设置中证明独特的麦迪和融合,以使SODES和Infinite dimensiential dimensiential spdes sepses and spdess and spdess sepdes sequilibrium均衡。虽然预计该研究对流体力学和统计物理学有直接的影响,但研究此类系统将导致的技术将适用于其他领域的广泛问题,例如生物学,工程,物理和财务,这些技术经常使用随机的普通和部分差分方程作为建模工具。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Unique Ergodicity in Nonlinear Stochastic Partial Differential Equations
- DOI:10.1007/s10955-016-1605-x
- 发表时间:2015-12
- 期刊:
- 影响因子:1.6
- 作者:N. Glatt-Holtz;Jonathan C. Mattingly;Geordie Richards
- 通讯作者:N. Glatt-Holtz;Jonathan C. Mattingly;Geordie Richards
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Mattingly其他文献
Numerical methods for stochastic differential equations based on Gaussian mixture
基于高斯混合的随机微分方程数值方法
- DOI:
10.4310/cms.2021.v19.n6.a5 - 发表时间:
2018-12 - 期刊:
- 影响因子:1
- 作者:
Lei Li;Jianfeng Lu;Jonathan Mattingly;Lihan Wang - 通讯作者:
Lihan Wang
Jonathan Mattingly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Mattingly', 18)}}的其他基金
Southeastern Probability Conference 2017: Special Edition Interacting Particle Systems with Applications in Biology, Ecology, and Statistical Physics
2017 年东南概率会议:特别版相互作用粒子系统及其在生物学、生态学和统计物理学中的应用
- 批准号:
1719189 - 财政年份:2017
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Stochastics and Dynamics: Asymptotic problems
FRG:协作研究:随机学和动力学:渐近问题
- 批准号:
0854879 - 财政年份:2009
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant
CAREER: Stochastic analysis and numerics in partial differential equations and extended dynamical systems
职业:偏微分方程和扩展动力系统中的随机分析和数值
- 批准号:
0449910 - 财政年份:2005
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant
MSPRF: Stochastic PDSs and Multiscale Phenomena
MSPRF:随机 PDS 和多尺度现象
- 批准号:
9971087 - 财政年份:1999
- 资助金额:
$ 22.86万 - 项目类别:
Fellowship Award
相似国自然基金
基于高通量测序和培养组学的伴侣动物-人抗生素抗性基因分布特征及传播研究
- 批准号:82373646
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
虚假信息跨平台传播模型和关键路径管控方法研究
- 批准号:72374056
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
负面偏好下的谣言变异与谣言传播多尺度互动机理研究
- 批准号:
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:
压力耐受操纵子ter在高毒力肺炎克雷伯菌中的传播机制及适应性研究
- 批准号:32300156
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高阶相互作用下的复杂网络信息传播动力学研究
- 批准号:12305043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247396 - 财政年份:2024
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342936 - 财政年份:2024
- 资助金额:
$ 22.86万 - 项目类别:
Continuing Grant
Collaborative Research: Dynamic connectivity of river networks as a framework for identifying controls on flux propagation and assessing landscape vulnerability to change
合作研究:河流网络的动态连通性作为识别通量传播控制和评估景观变化脆弱性的框架
- 批准号:
2342937 - 财政年份:2024
- 资助金额:
$ 22.86万 - 项目类别:
Continuing Grant
Collaborative Research: GEM: Propagation and Dissipation of Electromagnetic Ion Cyclotron Waves in the Magnetosphere and Ionosphere
合作研究:GEM:磁层和电离层中电磁离子回旋波的传播和耗散
- 批准号:
2247398 - 财政年份:2024
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Dynamics and Wave Propagation through Phononic Tunneling Junctions based on Classical and Quantum Mechanical Bistable Structures
合作研究:基于经典和量子机械双稳态结构的声子隧道结的非线性动力学和波传播
- 批准号:
2423960 - 财政年份:2024
- 资助金额:
$ 22.86万 - 项目类别:
Standard Grant