Collaborative Research: Tensor Envelope Model - A New Approach for Regressions with Tensor Data

合作研究:张量包络模型 - 张量数据回归的新方法

基本信息

  • 批准号:
    1613137
  • 负责人:
  • 金额:
    $ 13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

One of the most intriguing questions in modern science is to understand the human brain. In particular, scientists want to understand the differences between the brains of people with neurological disorders and those without. In brain imaging analysis, scientists collect data in the form of images that are used to compare the normal aging process to the development of neurological disorders. Through this project, the PIs seek to develop a toolkit comprised of a set of novel statistical methods, theories, and algorithms for the analysis of brain imaging data, as well as similar data that arise in a variety of scientific and business fields. The proposed research program is expected to make significant contributions on two fronts: timely responding to the growing needs and challenges of array data analysis, and providing a class of associated methodology that advances the statistical discipline. Research proposed in this project is to be disseminated through the investigators' close collaborations with the neuroscientists, as well as substantial educational and outreach activities.Multidimensional array, or tensor, data are now frequently arising in a wide range of scientific and business fields. Aiming to address some of the most pressing questions in tensor data analysis, this research will integrate advanced statistical modeling devices with modern computational techniques to develop a set of novel tensor regression methods. Whereas there has been an enormous body of literature on high-dimensional regression analysis, nearly all work is with a vector response or predictor. Naively turning a tensor into a vector would result in ultrahigh dimensionality, destroy inherent structural information embedded in the tensor, and often render classical methods inadequate. This research will develop methods and tools for regression modeling of tensor responses or predictors, which both effectively tackles the high dimensionality and simultaneously preserves the tensor structure. Three sets of problems are to be investigated: (1) tensor response regression with envelope, aiming to address questions such as identifying brain regions exhibiting different activity patterns between the disease group and the general population after controlling for a set of potential confounding variables; (2) tensor predictor regression with envelope, aiming at questions of using brain images to diagnose neurodegenerative disorders and to predict onset of neuropsychiatric diseases; and (3) covariance matrix response regression with envelope, aiming to understand brain network alternations and building their associations with pathological phenotypes. The core idea underlying all of these aims is the adoption of a generalized sparsity principle and the development of a class of tensor envelope methods. The classical sparsity principle assumes a subset of individual variables are irrelevant, and various penalty functions are employed to induce such sparsity. By contrast, this generalized sparsity principle assumes linear combinations of variables are irrelevant, and the proposed envelope methods simultaneously identify and exclude such irrelevant information to achieve much improved estimation accuracy and efficiency.
现代科学中最有趣的问题之一是了解人脑。特别是,科学家们希望了解患有神经系统疾病的人和没有神经系统疾病的人的大脑之间的差异。在脑成像分析中,科学家以图像形式收集数据,用于将正常衰老过程与神经系统疾病的发展进行比较。通过这个项目,PI 寻求开发一个由一组新颖的统计方法、理论和算法组成的工具包,用于分析大脑成像数据以及各种科学和商业领域中出现的类似数据。拟议的研究计划预计将在两个方面做出重大贡献:及时响应阵列数据分析日益增长的需求和挑战,并提供一类推进统计学科的相关方法。该项目提出的研究将通过研究人员与神经科学家的密切合作以及大量的教育和推广活动来传播。多维数组或张量数据现在经常出现在广泛的科学和商业领域。为了解决张量数据分析中一些最紧迫的问题,这项研究将先进的统计建模设备与现代计算技术相结合,开发一套新颖的张量回归方法。尽管有大量关于高维回归分析的文献,但几乎所有工作都是针对向量响应或预测变量。简单地将张量转换为向量会导致超高维度,破坏张量中嵌入的固有结构信息,并且通常会使经典方法变得不够充分。这项研究将开发张量响应或预测变量回归建模的方法和工具,既能有效解决高维问题,又能同时保留张量结构。需要研究三组问题:(1)带包络的张量响应回归,旨在解决诸如在控制一组潜在的混杂变量后识别疾病组和一般人群之间表现出不同活动模式的大脑区域等问题; (2)带包络的张量预测回归,针对利用脑图像诊断神经退行性疾病和预测神经精神疾病发病的问题; (3)带有包络的协方差矩阵响应回归,旨在了解大脑网络的变化并建立它们与病理表型的关联。所有这些目标的核心思想是采用广义稀疏原理并开发一类张量包络方法。经典的稀疏性原理假设单个变量的子集是不相关的,并且采用各种罚函数来诱导这种稀疏性。相比之下,这种广义稀疏原理假设变量的线性组合是不相关的,并且所提出的包络方法同时识别和排除此类不相关信息,以实现大大提高的估计精度和效率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lexin Li其他文献

Sparse Low-rank Tensor Response Regression
稀疏低秩张量响应回归
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Sun;Lexin Li
  • 通讯作者:
    Lexin Li
Exploiting predictor domain information in sufficient dimension reduction
在充分降维中利用预测域信息
Scalable Object Detection Using Deep but Lightweight CNN with Features Fusion
使用深度轻量级 CNN 和特征融合进行可扩展目标检测
  • DOI:
    10.1007/978-3-319-71607-7_33
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Qiaosong Chen;Shangsheng Feng;Pei Xu;Lexin Li;Ling Zheng;Jin Wang;Xin Deng
  • 通讯作者:
    Xin Deng
Sufficient Dimension Reduction
  • DOI:
    10.1002/9781118445112.stat08042
  • 发表时间:
    2018-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lexin Li
  • 通讯作者:
    Lexin Li
High-dimensional Response Growth Curve Modeling for Longitudinal Neuroimaging Analysis
用于纵向神经影像分析的高维响应生长曲线建模
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lu Wang;Xiang Lyu;Zhengwu Zhang;Lexin Li
  • 通讯作者:
    Lexin Li

Lexin Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lexin Li', 18)}}的其他基金

I-Corps: Development of machine learning technology for matching under a variety of realistic and largescale preference structures
I-Corps:开发用于在各种现实和大规模偏好结构下进行匹配的机器学习技术
  • 批准号:
    2133869
  • 财政年份:
    2021
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Graphical Modeling of Multivariate Functional Data
CIF:小型:协作研究:多元函数数据的图形建模
  • 批准号:
    2102227
  • 财政年份:
    2021
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
New Dimension Reduction Approaches for Modern Scientific Data with High Dimensionality and Complex Structure
高维复杂结构现代科学数据降维新方法
  • 批准号:
    1106668
  • 财政年份:
    2011
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Sufficient Dimension Reduction for Missing, Censored, and Correlated Data
针对缺失、删失和相关数据进行充分降维
  • 批准号:
    0706919
  • 财政年份:
    2007
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant

相似国自然基金

边缘智能下基于张量计算的时空场景图高效推理方法研究
  • 批准号:
    62302131
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
UUV运动状态下的水下目标磁梯度张量测量与智能成像方法研究
  • 批准号:
    52371353
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
融合航空重力梯度全张量的超高分辨率区域重力场建模方法研究
  • 批准号:
    42374099
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
数据局部缺失下融合张量学习的水导轴承故障诊断方法研究
  • 批准号:
    52305091
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高阶张量保结构秩R逼近优化算法及应用研究
  • 批准号:
    12371315
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316201
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316203
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Continuing Grant
Collaborative Research: PPoSS: LARGE: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:LARGE:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2316202
  • 财政年份:
    2023
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Large: A comprehensive framework for efficient, scalable, and performance-portable tensor applications
协作研究:PPoSS:大型:高效、可扩展和性能可移植的张量应用程序的综合框架
  • 批准号:
    2216903
  • 财政年份:
    2022
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Cross-layer Coordination and Optimization for Scalable and Sparse Tensor Networks (CROSS)
合作研究:PPoSS:规划:可扩展和稀疏张量网络的跨层协调和优化(CROSS)
  • 批准号:
    2217028
  • 财政年份:
    2022
  • 资助金额:
    $ 13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了