Printed and flexible photovoltaics from aqueous solutions with integrated power electronics for energy harvesting

具有用于能量收集的集成电力电子器件的水溶液印刷和柔性光伏发电

基本信息

  • 批准号:
    1610899
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

Abstract:Non-TechnicalThis work aims to print flexible solar modules integrated with power electronics. Power electronics ensure that the maximum power is drawn from the solar module even if lighting conditions change. Printing electronics from solution is an additive process that could offer cost, energy and materials savings when compared to lithographic processes. For the power electronics, printed passive components'inductors, capacitors, and resistors will be integrated with silicon chips to ensure maximum performance in a flexible form factor. The intended solar modules will be printed from water-based inks eliminating the health and environment risks posed by typical organic solvents used in printed organic electronics. This project has the potential to take the necessary steps for the field of organic electronics, specifically organic photovoltaics, to evolve from single idealized devices to a low-cost mature technology. Emerging fields such as flexible and wearable electronics require a reliable manufacturing process for power supply and this work will impact flexible power harvesting systems and their integration with a load device. The proposed activities are addressing one of the biggest challenges of organic electronics: reliable manufacturing of flexible integrated devices for a specific application. Technical:In order to accomplish such a low-cost environmentally friendly energy harvesting system, this work will focus on three tasks. The first task is ink formulation for the components of the integrated power system. The aqueous inks for the active layer in the solar module will consist of nanoparticles fabricated using a mini-emulsion method. The work will characterize the variables in the fabrication process, using a combination of size, absorption, and electrical measurements to determine the compositions of materials that provide ideal morphology for photovoltaic performance. Polymers with different functional groups have been selected to determine how functional groups, which are known to affect a polymer's solubility and surface energy, also affect nanoparticle size and stability in water. Ink formulation will also take place for power electronic components, such as capacitors. The goal is to achieve high specific capacitance while maintaining fabrication reproducibility. The second task is to develop printing methods for polymer solar cells from aqueous inks and power electronic components. Blade coating and screen printing will be used for polymer solar cells and power electronics, respectively. Printed passive components will be developed, studied and characterized for maximum power point tracking, so that the solar cells may be operated efficiently in various irradiances. The third task is to integrate the organic solar cell modules with power electronics. Monolithically integrated solar modules will be designed and fabricated by printing series-connected solar cells, and the performance of the solar modules and maximum power point tracking circuit will be characterized under realistic practical conditions. The goal is to design a photovoltaic energy harvesting system that will perform at its maximum efficiency at both indoor and outdoor light intensities, with the intent of use with loads spanning a range of sensors, in addition to portable and wearable devices. In addition to these tasks, the project will utilize environmentally friendly methods to address the challenge presented by the use of organic solvents in a manufacturing process. For the outreach program it is planned to develop science modules for use with middle school students. The project will involve two REU programs, with one designed to involve community college students in the proposed research.
摘要:非技术这项工作旨在打印与电力电子设备集成的柔性太阳能模块。电源电子设备确保即使照明条件发生变化,也可以从太阳能模块中汲取最大功率。从解决方案中打印电子产品是一个添加过程,与光刻过程相比,可以提供成本,能源和材料节省。对于电力电子设备,印刷的被动组件电源,电容器和电阻器将与硅芯片集成,以确保以柔性外形为单位。预期的太阳能模块将由水基油墨打印,从而消除了印刷有机电子产品中典型的有机溶剂带来的健康和环境风险。该项目有可能采取必要的步骤,即有机电子领域,特别是有机光伏的领域,从单个理想化的设备到低成本成熟的技术。诸如柔性和可穿戴电子设备之类的新兴领域需要可靠的电源制造工艺,这项工作将影响灵活的发电系统及其与负载设备的集成。拟议的活动是针对有机电子产品的最大挑战之一:可靠的柔性集成设备为特定应用程序制造。技术:为了完成这样一个低成本的环保能源收集系统,这项工作将集中在三个任务上。第一个任务是集成电源系统组件的墨水公式。太阳能模块中活性层的水墨将由使用微型乳液法制造的纳米颗粒组成。这项工作将使用大小,吸收和电气测量的组合来确定材料的组成,这些材料的组成为光伏性能提供理想的形态。已经选择了具有不同官能团的聚合物来确定官能团的官能团(已知会影响聚合物的溶解度和表面能量),还会影响水中的纳米颗粒大小和稳定性。电源组件(例如电容器)也将进行墨水配方。目的是在保持制造可重复性的同时获得高特异性的电容。第二个任务是开发从水溶液和电力电子组件的聚合物太阳能电池的打印方法。刀片涂料和丝网印刷将分别用于聚合物太阳能电池和电源。将开发,研究和表征印刷的被动组件以最大的功率跟踪,以便在各种辐照机构中可以有效地操作太阳能电池。第三个任务是将有机太阳能电池模块与电源电子设备整合在一起。单层集成的太阳能模块将通过打印串联的太阳能电池设计和制造,并且在现实的实用条件下,太阳能模块的性能和最大功率点跟踪电路将被表征。目的是设计一个光伏能量收集系统,该系统将在室内和室外光强度下以其最大效率执行,此外,除了便携式和可穿戴设备外,还具有横跨一系列传感器的负载。除了这些任务外,该项目还将利用环保方法来应对在制造过程中使用有机溶剂所带来的挑战。对于外展计划,计划开发与中学生一起使用的科学模块。该项目将涉及两个REU计划,该计划旨在涉及社区大学生参与拟议的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ana Arias其他文献

Comparative Antiatherogenic Effects of Intravenous AAV8- and AAV2-Mediated ApoA-IMilano Gene Transfer in Hypercholesterolemic Mice
静脉注射 AAV8 和 AAV2 介导的 ApoA-IMilano 基因转移对高胆固醇血症小鼠的抗动脉粥样硬化作用比较
Advancing the European energy transition based on environmental, economic and social justice
基于环境、经济和社会正义推进欧洲能源转型
Comparative Effects of Diet-Induced Lipid Lowering Versus Lipid Lowering Along With Apo A-I Milano Gene Therapy on Regression of Atherosclerosis
饮食诱导降脂与降脂联合 Apo A-I Milano 基因治疗对动脉粥样硬化消退的效果比较
Transfusion‐associated adverse events incidence and severity after the implementation of an active hemovigilance program with 24 h follow‐up. A prospective cohort study
实施积极的血液警戒计划并进行 24 小时随访后,输血相关不良事件的发生率和严重程度。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Jose Luis Bueno;A. B. Bocanegra;Isabel Sánchez;José M Mateos;Alba Puyuelo;J. A. García Erce;Héctor Villanueva;María M Reaño;Lucía Núñez;Azucena Losa;Ana Arias;Miriam Aguilar;Luis A Richart;Fátima Martínez;Rosario Salgado;Ana Royuela;J. L. Cruz;Roberto Fernández;R. Forés;Inocencia Fornet;Emilio Ojeda;Rafael Cabrera;Rafael F. Duarte
  • 通讯作者:
    Rafael F. Duarte
Macroalgae biorefineries as a sustainable resource in the extraction of value-added compounds
大型藻类生物精炼厂作为提取增值化合物的可持续资源
  • DOI:
    10.1016/j.algal.2022.102954
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ana Arias;G. Feijóo;M. T. Moreira
  • 通讯作者:
    M. T. Moreira

Ana Arias的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ana Arias', 18)}}的其他基金

I-Corps: Low-cost biochemical sensors to optimize agricultural inputs
I-Corps:用于优化农业投入的低成本生化传感器
  • 批准号:
    2311400
  • 财政年份:
    2023
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
I-Corps: Printed receive coils for Magnetic Resonance Imaging
I-Corps:用于磁共振成像的印刷接收线圈
  • 批准号:
    1712773
  • 财政年份:
    2017
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Printed Organic Layers for Integrated Electronics: controlling processing to achieve stability and reproducibility
用于集成电子器件的印刷有机层:控制加工以实现稳定性和可重复性
  • 批准号:
    1202189
  • 财政年份:
    2012
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant

相似国自然基金

激励分布式资源支撑灵活性与弹性提升的配网零售侧电价优化定价方法
  • 批准号:
    52307136
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
承载6G业务的灵活速率相干无源光网络关键理论和技术研究
  • 批准号:
    62371207
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
互联互通条件下面向灵活运营组织的轨道交通网络列车运营计划一体化优化研究
  • 批准号:
    72371015
  • 批准年份:
    2023
  • 资助金额:
    39 万元
  • 项目类别:
    面上项目
海马DG脑区PV抑制性中间神经元参与认知灵活性调控的机制及其失调与自闭症样行为的关系
  • 批准号:
    82301727
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脚桥核(PPN)胆碱能神经元对帕金森病认知灵活性障碍的调控作用及机制研究
  • 批准号:
    82301595
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Energy Materials - Flexible Photovoltaics for Ambient IoT applications
能源材料 - 用于环境物联网应用的柔性光伏
  • 批准号:
    BB/X00502X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Research Grant
SBIR Phase I: Flexible Internet of Things (IoT) Smart Label Powered by Organic Photovoltaics
SBIR 第一阶段:有机光伏驱动的灵活物联网 (IoT) 智能标签
  • 批准号:
    2112259
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Green flexible organic photovoltaics for energy-autonomous electronics
用于能源自主电子产品的绿色柔性有机光伏发电
  • 批准号:
    EP/V057839/1
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Fellowship
Flexible Photovoltaics with 2D-Material Heterostructures
具有二维材料异质结构的柔性光伏
  • 批准号:
    558711-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 36万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Flexible Photovoltaics with 2D-Material Heterostructures
具有二维材料异质结构的柔性光伏
  • 批准号:
    558711-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 36万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了