Ultra high performance light sources based on organic field activated devices (FADs)

基于有机场激活器件 (FAD) 的超高性能光源

基本信息

  • 批准号:
    1610641
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2019-11-30
  • 项目状态:
    已结题

项目摘要

Abstract title: Development of Ultra-High Efficiency Lighting Using AC-driven Organic Devices Abstract:Non-technical: If the efficiency of lighting in US homes and offices could be increased by 50%, it would save $115 Billion nationally by 2025, alleviate the need for 133 new power stations, eliminate 258 million metric tons of carbon and save 273TWh/year in energy. And this is just for room lighting! But, if that increase was larger: 100% or 200%, the impact to the world economy, with all of its applications, could be staggering! How could this be done? In this program an exciting new approach to using organic materials in making light is examined-one that can be far more efficient than the methods used today. The approach uses a newly introduced, nanoengineered, organic thin film lamp architecture and drives the lamp with a resonant AC-electric field which not only stimulates light emission, but introduces internal magnetic fields that allow control over internal quantum efficiencies. So, losses typically associated with the direct flow of current into and out of the structure are managed through reactive power coupling and the proper choice of materials that insulate the emitter of the lamp from the electrical contacts, and internal losses are managed by the magnetic field. Preliminary results from these devices are intriguing, suggesting extraordinary efficiencies combined with high brightness. But exactly how far the efficiency and performance of the principle can be pushed is still unknown. This program will set the foundations of that understanding and potentially drive a revolution in ultra-high performance lighting that is cheap, efficient, and long lived, challenging even the inorganic light emitting diode (LED) for supremacy in the marketplace. Technical: The proposed research will establish a framework for understanding the fundamental mechanisms of light emission in the AC-coupled, organic, field-induced electroluminescent devices. The focus of the work will be an examination of the basic physics of AC field-induced exciton formation required to push forward performance. Specifically, exciton creation rates will be tied to the properties of internal "charge generators"such as nanoparticles (ie. single walled carbon nanotubes, nanoplatelettes, and quantum dots) or small molecules placed proximate to the emitters. Triplet harvesting will be demonstrated in field-induced light generation. This will be tied to modifications of resonant energy transfer efficiency through nanoantennae effects mediated through nanoparticle additives. Finally, a direct correlation between internal magnetic fields and the modification of de-excitation routes that alter single to triplet population dynamics will be shown. The outcome of this work will establish the principles necessary to balance dopants, magnetic interactions and internal energy transfer rates in these types of devices generally, pushing the very limits of their power efficiency and brightness. However, the program also has the potential to set new directions in high performance magneto-optic devices based in organics, based on control over excitation lifetimes using internal magnet fields. This would open opportunities in optical switching, displays, organic lasers, and a host of other such applications.
摘要标题:使用AC驱动的有机设备的超高效率照明开发摘要:非技术:如果美国房屋和办公室的照明效率可以提高50%,它将在2025年节省1150亿美元需要133个新的电站,消除了2.58亿吨碳,并节省273TWH/年的能源。 这只是用于房间照明!但是,如果增长更大:100%或200%,对世界经济的影响以及所有应用程序的影响可能会令人震惊! 怎么办? 在此程序中,对使用有机材料进行光线的一种令人兴奋的新方法进行了检查,该方法比今天使用的方法要高得多。该方法使用新引入的,纳米工程的有机薄膜灯体系结构,并使用谐振的交流电场驱动灯,不仅可以刺激光发射,而且引入了内部磁场,从而可以控制内部量子效率。 因此,通常与电流进入和流出结构的直接流相关的损失是通过反应性耦合来管理的,并且正确选择了将灯与电气接触与灯的发射器绝缘的材料,并且内部损失由磁场管理。 这些设备的初步结果令人着迷,这表明效率非常高,并结合了高亮度。 但是,该原则的效率和绩效恰好是未知的。 该计划将为这种理解的基础定下基础,并有可能驱动超高性能照明的革命,即便宜,高效且长期生活,甚至挑战了在市场上至高无上的无机光发光二极管(LED)。 技术:拟议的研究将建立一个框架,以了解AC耦合,有机,田间诱导的电致发光设备中光发射的基本机制。这项工作的重点将是对AC场诱导的激子形成的基本物理学的检查。 具体而言,激子的产生速率将与内部“电荷发生器”的性质相关,例如纳米颗粒(即单壁碳纳米管,纳米片和量子点)或与发射器接近的小分子。 三胞胎的收获将在现场引起的光生产生中证明。 这将与通过纳米颗粒添加剂介导的纳米反泰效应的谐振能量传递效率的修改有关。最后,将显示内部磁场与将单个单一磁性转换为三重态人口动态变化的驱激路线的修改之间的直接相关性。 这项工作的结果将确定在这些类型的设备中平衡掺杂剂,磁相互作用和内部能量传递速率所必需的原理,从而推动其功率效率和亮度的极限。但是,该程序还具有基于使用内部磁铁场对激发寿命的控制,在基于有机物的高性能磁光设备中设置新方向。 这将在光学切换,显示器,有机激光器和许多其他此类应用程序方面开放机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Carroll其他文献

A Smartphone App for Parental Management of Adolescent Conduct Problems: Randomized Clinical Trial of iKinnect.
用于家长管理青少年行为问题的智能手机应用程序:iKinnect 的随机临床试验。
Assessing the Impact of Information and Communication Technologies on Electoral Integrity
评估信息和通信技术对选举诚信的影响
Effusive-constrictive pericarditis
渗出性缩窄性心包炎
  • DOI:
    10.53347/rid-67705
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rengarajan R;David Carroll
  • 通讯作者:
    David Carroll
Pleural effusion volume (ultrasound)
胸腔积液量(超声)
  • DOI:
    10.53347/rid-63392
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Botz;David Carroll
  • 通讯作者:
    David Carroll
Tissue Doppler imaging (echocardiography)
组织多普勒成像(超声心动图)
  • DOI:
    10.53347/rid-67527
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Murphy;David Carroll
  • 通讯作者:
    David Carroll

David Carroll的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Carroll', 18)}}的其他基金

REU Site: Research at the Intersection of Biology and Mathematics
REU 网站:生物学和数学交叉点的研究
  • 批准号:
    1359341
  • 财政年份:
    2014
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
SBIR Phase I: MatLab Based Toolbox for Promoting Engineering Education of L1 Adaptive Control Theory
SBIR 第一阶段:基于 MatLab 的工具箱,促进 L1 自适应控制理论的工程教育
  • 批准号:
    1113365
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Electronic Phenomena in Carbon Nanotubes: Quantum Mechanics in Low-Dimensional Systems with Topological Complexity
碳纳米管中的电子现象:具有拓扑复杂性的低维系统中的量子力学
  • 批准号:
    0070661
  • 财政年份:
    2000
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

多模式音乐实践提高人工耳蜗植入者言语和音乐感知表现的试验研究
  • 批准号:
    82301301
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
多组学分析赛马肠道微生物增强宿主运动表现的作用机制
  • 批准号:
    32360016
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
华南埃迪卡拉纪Shuram事件不同表现形式的天文年代学约束
  • 批准号:
    42302129
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
解析人类意志:分离自主动作和控制信念对认知表现的促进作用
  • 批准号:
    32300883
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
游戏是工作的对立面吗?游戏式工作对员工和团队绩效表现的影响机制研究
  • 批准号:
    72302024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Ultra-dense ceramic scintillator for BrainPET scanner
用于 BrainPET 扫描仪的超致密陶瓷闪烁体
  • 批准号:
    10761208
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Three-dimensional Nonlinear Structured Illumination for Live Imaging with 80 nm resolution
用于 80 nm 分辨率实时成像的三维非线性结构照明
  • 批准号:
    10637540
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Development of a tele-mentoring system integrated into an ultra-portable surgical microscope to treat cataract in underserved populations
开发集成到超便携式手术显微镜中的远程指导系统,以治疗服务不足人群的白内障
  • 批准号:
    10602749
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Resource Development Core
资源开发核心
  • 批准号:
    10747628
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Mesoscopic microscopy for ultra-high speed and large-scale volumetric brain imaging
用于超高速和大规模脑体积成像的介观显微镜
  • 批准号:
    10634911
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了