CDS&E: Appraisal of Subgrid Scale Closures in Reacting Turbulence via DNS Big Data
CDS
基本信息
- 批准号:1609120
- 负责人:
- 金额:$ 36.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Design and manufacture of advanced combustion systems for both industrial and government applications is aided by direct numerical simulation (DNS) of turbulent combustion data. Such "big data" sets are so large that the data has to be either aggressively filtered at the source or discarded after a short period of time. The project employs a range of strategies and computational tools for utilizing DNS data to appraise the performance of large eddy simulation (LES) predictions in turbulent combustion. The study will pave the way for LES to become the primary means of predictions for future design and manufacturing of combustion systems, while building a data sharing infrastructure, and providing educational and outreach programs to students at all levels. The proposed research is built around a coordinated 5-element strategy for handling turbulent combustion direct numerical simulation (DNS) data sets of the order of tens to hundreds of terabytes in size. The elements include: (1) Appraisal of current LES strategies using DNS data in various flame regimes; (2) Assessment of confidence intervals of SGS closures in LES; (3) Development of a computational framework for efficient computation of filtered DNS data; (4) Development of infrastructure for broad sharing of DNS data and annotations which can be employed to appraise future SGS closures and LES predictions; and (5) Suggestion for future DNS to be conducted of flames in other (missing) regimes. The DNS big data will be collected from multiple sources and will pertain to both non-premixed and premixed (fully or partially) flames. The LES will be conducted with the aid of subgrid scale (SGS) closures that are applicable for each of the flame configurations considered in DNS. An attempt will be made to cover all of the regimes of turbulent combustion as identified in the literature and contribute further insight as to which LES prediction would work better in the different regimes. Appraisal of the SGS closures via DNS data will be invaluable for assessing the level of trust and confidence that can be placed on the closure. By integrating expertise from a team of engineers, computer scientists, and mathematicians, the study has the potential to make a significant impact in state-of-the-art high-fidelity predictions of turbulent combustion. Success of this research will have a significant impact in combustion, both in the gas-turbine industry and in government (DoD, DOE, NASA). The potential for LES to become the primary predictive tool for future design and manufacturing of combustion systems will be aided by the enhanced infrastructure, which will facilitate incorporation of future SGS closures. The study will also provide research opportunities for both graduate and undergraduate students, K-12 outreach, and recruitment of students from minority and under-represented groups.The project is co-funded by the Computational Data-Enabled Science and Engineering (CDS&E) Program.
湍流燃烧数据的直接数值模拟(DNS)帮助了工业和政府应用的高级燃烧系统的设计和制造。 这样的“大数据”集是如此之大,以至于必须在源头上积极过滤数据,或在短时间后丢弃。 该项目采用了一系列策略和计算工具来利用DNS数据来评估动荡燃烧中大型涡模拟(LES)预测的性能。这项研究将为LES成为燃烧系统未来设计和制造的预测的主要手段,同时建立数据共享基础架构,并向各级学生提供教育和外展计划。拟议的研究围绕着协调的5元素策略来处理湍流燃烧直接数值模拟(DNS)数据集,该数据集的大小为数百吨。 这些要素包括:(1)使用各种火焰制度中的DNS数据评估当前LES策略; (2)评估LES中SGS关闭的置信区间; (3)开发用于有效计算过滤DNS数据的计算框架; (4)开发基础设施,用于广泛共享DNS数据和注释,可用于评估未来的SGS关闭和LES预测; (5)建议未来的DNS在其他(缺失)制度中进行火焰。 DNS的大数据将从多个来源收集,并将其与未经原始的(完全或部分)的火焰有关。 LES将借助适用于DNS中考虑的每种火焰配置的子网格量表(SGS)封闭。将尝试涵盖文献中确定的所有动荡燃烧制度,并进一步见解LES预测在不同的制度中更好地发挥作用。 通过DNS数据对SGS关闭的评估对于评估可以放置在关闭上的信任和信心水平将是无价的。通过整合来自工程师,计算机科学家和数学家团队的专业知识,该研究有可能对最先进的高保真预测对动荡的燃烧产生重大影响。 这项研究的成功将对燃烧行业和政府(国防部,DOE,NASA)产生重大影响。增强的基础设施将有助于LES成为燃烧系统未来设计和制造的主要预测工具,这将有助于纳入未来的SG封闭。这项研究还将为研究生和本科生,K-12外展活动以及少数群体和代表性不足的群体的招聘。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Argo: Architecture-aware graph partitioning
Argo:架构感知图分区
- DOI:10.1109/bigdata.2016.7840614
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Zheng, Angen;Labrinidis, Alexandros;Chrysanthis, Panos K.;Lange, Jack
- 通讯作者:Lange, Jack
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peyman Givi其他文献
Peyman Givi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peyman Givi', 18)}}的其他基金
CDS&E: Data-driven Discovery of Probabilistic Closures in Turbulent Flows
CDS
- 批准号:
2152803 - 财政年份:2022
- 资助金额:
$ 36.27万 - 项目类别:
Standard Grant
Collaborative Research: Workshop on Exuberance of Machine Learning in Transport Phenomena
合作研究:机器学习在交通现象中的丰富性研讨会
- 批准号:
1940185 - 财政年份:2020
- 资助金额:
$ 36.27万 - 项目类别:
Standard Grant
Collaborative Research: A Langevin Subgrid Scale Closure and Discontinuous Galerkin Exascale Large Eddy Simulation of Complex Turbulent Flows
合作研究:复杂湍流的 Langevin 亚网格尺度闭合和不连续 Galerkin 百亿亿次大涡模拟
- 批准号:
1603131 - 财政年份:2016
- 资助金额:
$ 36.27万 - 项目类别:
Standard Grant
CDS&E: Data Management and Visualization in Petascale Turbulent Combustion Simulation
CDS
- 批准号:
1250171 - 财政年份:2012
- 资助金额:
$ 36.27万 - 项目类别:
Standard Grant
Collaborative Research: ITR: (ASE)-(sim+dmc): Algorithms for Large-Scale Simulations of Turbulent Combustion
合作研究:ITR:(ASE)-(sim dmc):湍流燃烧大规模模拟算法
- 批准号:
0426857 - 财政年份:2004
- 资助金额:
$ 36.27万 - 项目类别:
Standard Grant
Direct Numerical Simulations and Large Eddy Simulations of Unpremixed Turbulent Flames
非预混湍流火焰的直接数值模拟和大涡模拟
- 批准号:
9012832 - 财政年份:1990
- 资助金额:
$ 36.27万 - 项目类别:
Standard Grant
Presidential Young Investigators Award: Simulation of Complex Reacting Flows
总统青年研究员奖:复杂反应流模拟
- 批准号:
9057460 - 财政年份:1990
- 资助金额:
$ 36.27万 - 项目类别:
Continuing Grant
相似国自然基金
人-物-环交互视角下城市社区环境影响时空动态量化评价与优化策略研究
- 批准号:72371072
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
中医药治疗新型冠状病毒感染恢复期多系统多维度评价指标集及测量方法研究
- 批准号:82305437
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于滑坡冲击-结构破坏随机动力过程的建筑物易损性概率定量评价
- 批准号:42377189
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
理化复合法改性流泥填筑路堤的性状时空演化理论及智能评价方法
- 批准号:52338007
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
ClinEX - Clinical Evidence Extraction, Representation, and Appraisal
ClinEX - 临床证据提取、表示和评估
- 批准号:
10754029 - 财政年份:2023
- 资助金额:
$ 36.27万 - 项目类别:
Development of a Knowledge Translation (KT) Quality Appraisal Instrument
知识翻译(KT)质量评价工具的开发
- 批准号:
479119 - 财政年份:2023
- 资助金额:
$ 36.27万 - 项目类别:
Operating Grants
Local Government Model for the management of administrative documents: Building up for Records Appraisal for Kumamoto Prefecture
地方政府行政文件管理模式:熊本县档案鉴定建设
- 批准号:
23H03692 - 财政年份:2023
- 资助金额:
$ 36.27万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Digital Chronic Pain Recommendations Map: Consolidation and Systematic Appraisal of Guideline Recommendations Regarding Management of Chronic Pain (e-ChronicPain RecMap)
数字慢性疼痛建议地图:关于慢性疼痛管理的指南建议的整合和系统评估 (e-ChronicPain RecMap)
- 批准号:
488685 - 财政年份:2023
- 资助金额:
$ 36.27万 - 项目类别:
Operating Grants
Facilitating evidence-based decision-making to combat antimicrobial resistance: development of a public, user-friendly database of the highest levels of evidence
促进基于证据的决策以对抗抗菌素耐药性:开发一个公共的、用户友好的最高水平证据数据库
- 批准号:
494278 - 财政年份:2023
- 资助金额:
$ 36.27万 - 项目类别:
Operating Grants