CRII: CHS: WiFi-Based Human Behavior Sensing and Recognition System for Aging in Place

CRII:CHS:基于 WiFi 的人类行为感知和识别系统,用于就地养老

基本信息

  • 批准号:
    1565604
  • 负责人:
  • 金额:
    $ 17.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-15 至 2019-07-31
  • 项目状态:
    已结题

项目摘要

As "baby boomers" age, the United States will experience considerable growth in its elderly population over the coming years. Studies consistently confirm that the majority of older adults would prefer to remain in their own homes for as long as possible. Therefore, there is a critical need for home-based assisted living technologies capable of continuously yet unobtrusively monitoring activities of daily living (ADLs) and detecting abnormal events, both to reduce the cost of elder care and to enhance the quality of life. Current human behavior monitoring systems for aging in place, which are typically based on cameras, smartphone/wearable devices, or ambient sensors, have fundamental limitations such as high cost and invasion of privacy that prevent them from being widely deployed. The PI's objective in this project is to build on his prior work to establish a research program to investigate a new approach to aging in place that harnesses the now-ubiquitous commercial home WiFi signals to monitor ADLs and detect abnormal events. The central idea is that different human activities cause different changes in WiFi signals; by analyzing these changes, the activity that caused the change can be recognized. This work will have broad societal impact both within the United States and abroad, by contributing to new techniques and systems for WiFi-based human behavior sensing and recognition in both single-subject and multi-subject scenarios. If the new system is effective, it will provide a non-intrusive, device-free, low-cost and privacy-preserving assisted living technology for aging in place. The PI will integrate research results from this project into both his undergraduate and graduate courses, as well as the K-12 education program; furthermore, the hardware and software developed in this research will be open-source, and the dataset collected during this project will be made available to others for further research.The PI plans to exploit the fine-grained PHY layer Channel State Information (CSI) extracted from the WiFi signals as the basis for a unified scheme for monitoring both the most common stationary and moving activities performed daily by older adults in their homes. He will detect stationary activities by tracking the minute but periodic chest movements caused by breathing, and he will extract frequency domain features to robustly recognize the same moving activity even with different movement directions or at different locations. The PI will develop Markov models to recognize complex ADLs, and he will leverage the breathing and physical body movement information to detect abnormal behaviors including accidental falls and disturbed sleep that are potential issues relating to aging in place. Ultimately, the PI will extend his techniques to recognize ADLs of multiple persons performed at the same time. To successfully achieve these objectives, the PI will need to overcome a number of significant technical challenges, for example detecting minute changes in the WiFi signal due to stationary activities such as working at a computer or watching TV while seated on a sofa. Robustly recognizing the same moving activity (e.g., housecleaning) performed in different ways or at different locations will also be tricky, because different movement directions or different layouts at different locations cause different disturbances to WiFi signals.
随着“婴儿潮一代”的老龄化,美国老年人口在未来几年将大幅增长。 研究一致证实,大多数老年人更愿意尽可能长时间地呆在自己的家中。 因此,迫切需要能够持续且不引人注目地监测日常生活活动(ADL)并检测异常事件的家庭辅助生活技术,以降低老年人护理成本并提高生活质量。 当前的就地老龄化人类行为监测系统通常基于摄像头、智能手机/可穿戴设备或环境传感器,但存在成本高和侵犯隐私等根本局限性,阻碍了其广泛部署。 PI 在该项目中的目标是在他之前的工作基础上建立一个研究计划,以研究一种新的就地养老方法,该方法利用现在无处不在的商业家庭 WiFi 信号来监控 ADL 并检测异常事件。 中心思想是不同的人类活动导致WiFi信号的不同变化;通过分析这些变化,可以识别导致变化的活动。 这项工作将为单主体和多主体场景中基于 WiFi 的人类行为感知和识别的新技术和系统做出贡献,从而在美国和国外产生广泛的社会影响。 如果新系统有效,它​​将为居家养老提供一种非侵入式、无设备、低成本且保护隐私的辅助生活技术。 PI将把该项目的研究成果整合到他的本科生和研究生课程以及K-12教育计划中;此外,本研究中开发的硬件和软件将开源,并且该项目期间收集的数据集将可供其他人进行进一步研究。PI 计划利用细粒度 PHY 层通道状态信息 (CSI)从 WiFi 信号中提取,作为统一方案的基础,用于监控老年人在家中每天进行的最常见的固定和移动活动。 他将通过跟踪由呼吸引起的微小但周期性的胸部运动来检测静止活动,并且他将提取频域特征以稳健地识别相同的运动活动,即使运动方向不同或在不同位置也是如此。 PI 将开发马尔可夫模型来识别复杂的 ADL,他将利用呼吸和身体运动信息来检测异常行为,包括意外跌倒和睡眠不安,这些都是与原位老化相关的潜在问题。 最终,PI 将扩展他的技术来识别多人同时执行的 ADL。 为了成功实现这些目标,PI 需要克服许多重大技术挑战,例如检测由于固定活动(例如在电脑前工作或坐在沙发上看电视)导致的 WiFi 信号的微小变化。 鲁棒地识别以不同方式或在不同位置执行的相同移动活动(例如,打扫房间)也很棘手,因为不同的移动方向或不同位置的不同布局会对 WiFi 信号造成不同的干扰。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mi Zhang其他文献

Pill Localization Training Data Augmentation Data Preprocessing Consumer + Reference Pill Images Pill Localization Inference Data Preprocessing Reference Image Student-CNNs Features Ranking Gradient CNN Color CNN Gray CNN Similarity Measure Pill Retrieval
药丸定位 训练数据增强 数据预处理 消费者参考药丸图像 药丸定位推理 数据预处理 参考图像 Student-CNN 特征排名 梯度 CNN 颜色 CNN 灰色 CNN 相似度测量 药丸检索
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiao Zeng;Kai Cao;Mi Zhang
  • 通讯作者:
    Mi Zhang
ETP: Learning Transferable ECG Representations via ECG-Text Pre-training
ETP:通过心电图文本预训练学习可转移的心电图表示
  • DOI:
    10.48550/arxiv.2309.07145
  • 发表时间:
    2023-09-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Che Liu;Zhongwei Wan;Sibo Cheng;Mi Zhang;Rossella Arcucci
  • 通讯作者:
    Rossella Arcucci
Gaussian-beam-propagation theory for nonlinear optics involving an analytical treatment of orbital-angular-momentum transfer
非线性光学的高斯光束传播理论,涉及轨道角动量传递的分析处理
  • DOI:
    10.1103/physreva.96.013830
  • 发表时间:
    2017-02-03
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    R. Lanning;Zhihao Xiao;Mi Zhang;I. Novikova;E. Mikhailov;Jonathan P. Dowling
  • 通讯作者:
    Jonathan P. Dowling
Theoretical Derivation and Verification of Liquid Viscosity and Density Measurements Using Quartz Tuning Fork Sensor
使用石英音叉传感器测量液体粘度和密度的理论推导和验证
Classification of Network Game Traffic Using Machine Learning
使用机器学习对网络游戏流量进行分类
  • DOI:
    10.1007/978-981-13-0893-2_15
  • 发表时间:
    2017-12-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yu;Mi Zhang;Rui Zhou
  • 通讯作者:
    Rui Zhou

Mi Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mi Zhang', 18)}}的其他基金

Collaborative Research: NeTS: Medium: Towards High-Performing LoRa with Embedded Intelligence on the Edge
协作研究:NeTS:中:利用边缘嵌入式智能实现高性能 LoRa
  • 批准号:
    2312675
  • 财政年份:
    2023
  • 资助金额:
    $ 17.16万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for 2017 ACM International Conference on Mobile Systems, Applications, and Services (ACM MobiSys)
2017 年 ACM 国际移动系统、应用程序和服务会议 (ACM MobiSys) 的 NSF 学生旅费补助金
  • 批准号:
    1724807
  • 财政年份:
    2017
  • 资助金额:
    $ 17.16万
  • 项目类别:
    Standard Grant
PFI:BIC: iSee - Intelligent Mobile Behavior Monitoring and Depression Analytics Service for College Counseling Decision Support
PFI:BIC:iSee - 用于大学咨询决策支持的智能移动行为监测和抑郁分析服务
  • 批准号:
    1632051
  • 财政年份:
    2016
  • 资助金额:
    $ 17.16万
  • 项目类别:
    Standard Grant
CSR: Small: RF-Wear: Enabling RF Sensing on Wearable Devices for Non-Intrusive Human Activity, Vital Sign and Context Monitoring
CSR:小型:RF-Wear:在可穿戴设备上实现射频感应,以实现非侵入式人类活动、生命体征和环境监测
  • 批准号:
    1617627
  • 财政年份:
    2016
  • 资助金额:
    $ 17.16万
  • 项目类别:
    Standard Grant

相似国自然基金

旁系同源CHS在柑橘黄酮类及花色苷合成通路中差异化调控的分子机制
  • 批准号:
    32302507
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
红曲霉关键chs基因调控红曲色素和桔霉素合成的作用机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
除虫菊CHS合成酶及其互作蛋白协同调控除虫菊酯合成代谢的催化机制解析
  • 批准号:
    31902051
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
先进CHS结构柔性复合负极材料的可控制备及其储能构效关系研究
  • 批准号:
    61574122
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
具有电刺激作用的三维梯度β-TCP复合神经导管材料的研究
  • 批准号:
    51572206
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

CHS: Medium: Collaborative Research: Augmenting Human Cognition with Collaborative Robots
CHS:媒介:协作研究:用协作机器人增强人类认知
  • 批准号:
    2343187
  • 财政年份:
    2023
  • 资助金额:
    $ 17.16万
  • 项目类别:
    Continuing Grant
寒冷暴露による皮膚免疫応答変化のメカニズム解明
阐明因冷暴露引起的皮肤免疫反应变化的机制
  • 批准号:
    22KJ2031
  • 财政年份:
    2023
  • 资助金额:
    $ 17.16万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CARDIOVASCULAR HEALTH STUDY (CHS) - TASK AREA C, STUDY CLOSEOUT
心血管健康研究 (CHS) - 任务领域 C,研究收尾
  • 批准号:
    10974001
  • 财政年份:
    2023
  • 资助金额:
    $ 17.16万
  • 项目类别:
CHS: Small: Towards Next-Generation Large-Scale Nonlinear Deformable Simulation
CHS:小型:迈向下一代大规模非线性变形模拟
  • 批准号:
    2244651
  • 财政年份:
    2022
  • 资助金额:
    $ 17.16万
  • 项目类别:
    Standard Grant
CHS: Smal: AI-Human Collaboration in Autonomous Vehicles for Safety and Security
CHS:Smal:自动驾驶汽车中的人工智能与人类协作以确保安全
  • 批准号:
    2245055
  • 财政年份:
    2022
  • 资助金额:
    $ 17.16万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了