Theoretical Problems in Soft Matter and Quantitative Biology

软物质和定量生物学的理论问题

基本信息

  • 批准号:
    1608501
  • 负责人:
  • 金额:
    $ 40.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-15 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

NONTECHNICAL SUMMARYThis award supports theoretical research and education to exploit the power of statistical physics to gain insight into complex systems that lie at the interface of biology, physics, and materials science. The approach applies understanding of materials and materials-related phenomena across disciplinary boundaries into biologically inspired problems with potential implications for applications. The project contains three major aims to investigate:1.) How spatial obstacles change the distribution of genes that appear at a particular place on a chromosome populations of invading organisms. Of particular interest is gaining insight into how environmental inhomogeneities can shape not only the boundaries at front of a population of invading bacteria but also the genetic structure of the bacteria. This research has potential to contribute to understanding the evolution of resistance of bacteria to antibiotics, as when opportunistic pathogens such as Pseudomonas aeruginosa invade catheters connected to hospitalized patients.2.) How mechanical properties of very thin shells are affected by temperature. This builds on the observation that fluctuations that arise with increasing temperature lead to unusual mechanical properties that describe distortions of a sheet over long distances. The PI aims to understand what happens when the sheet is rolled in to a thin spherical shell. This research has potential to contribute to developing strategies for the delivery of drugs to affected areas of the body, as well as having implications for mechanical systems assembled on scales 1000 times or so smaller than the diameter of a human hair.3.) Networks that describe neural development in animals and humans, and in particular how loss of connections among neurons and the strengthening and weakening of neural connections lead to neural circuits learning various functions.The project will contribute to the training of students and postodocs in modern theoretical methods on problems with impact across disciplinary boundaries.TECHNICAL SUMMARYThis award will support theoretical research and education in the development and application of statistical physics methods to diverse problems in materials science and biophysics. The PI will tackle problems that challenge theory and lead to intriguing confrontations with experiments. The issues addressed include spatial population genetics near obstacles and constrictions, the soft condensed matter physics of thin thermalized shells and the theory of the eigenfunctions and eigenvalues that control the nonlinear dynamics of directed localization in sparse networks with spatial randomness. Nonequilibrium statistical dynamics and population genetics that incorporate genetic drift, mutations, migrations, and competition and cooperation have played a crucial role in the evolutionary history of many species, in particular on solid surfaces. Examples include the migrations of invasive species, or bacterial invasions of animal tissue. Using the tools of nonequilibrium statistical dynamics and population genetics the PI will examine how these phenomena affect genetic lineages in spatial media containing obstacles. Because biological organisms do not typically grow up in well-mixed test tubes or featureless Petri dishes, it is important to understand how they behave in the presence of environmental inhomogeneities. The PI's research on thermalized shells builds on the "extreme mechanics" of thin plates and shells, characterized by the highly nonlinear Foeppl - von Karman equations. The background curvature of thermally excited spherical shells presents new challenges relative to flat plates, which will be addressed by generalizing graphical summation and renormalization group methods that have proven useful for sheet polymers. Finally, the project will investigate directed localization and the associated nonequilibrium dynamics in strongly non-Hermitian matrices (involving both excitatory and inhibitory connections) that arise naturally in simple models of interacting ecosystems and in sparse neural networks. The PI's theoretical research will determine how the intricate fractal eigenvalue spectrum that controls the spontaneous activity and induced response changes with an increasing ratio of inhibitory to excitatory connections and with a variable bias for the transfer of information in a particular direction. Strongly interdisciplinary by nature, the research could provide insights into controlling human pathogen invasions, the development of drug delivery strategies, and human and animal neural development. In addition, the project will contribute to the training of students and postodocs in modern theoretical methods with a wide area of applicability.
非技术摘要这一奖项支持理论研究和教育,以利用统计物理学的力量来深入了解生物学,物理学和材料科学界面的复杂系统。该方法将跨学科边界的材料和材料相关现象的理解应用于具有生物学启发的问题,对应用具有潜在影响。该项目包含三个主要旨在调查的主要目的:1。)空间障碍如何改变在入侵生物体染色体种群上特定位置出现的基因的分布。特别有趣的是,人们深入了解环境不均匀性如何不仅可以塑造入侵细菌的人群前面的边界,还可以塑造细菌的遗传结构。这项研究有可能有助于理解细菌对抗生素的耐药性的演变,就像机会性病原体(如铜绿假单胞菌)入侵与住院患者相关的导管时。2。这是基于观察到的观察,即随着温度升高而引起的波动会导致异常的机械性能,这些机械性能描述了长距离板的扭曲。 PI的目的是了解将纸卷成薄的球形外壳时会发生什么。这项研究有可能有助于制定向人体受影响区域传递药物的策略,并且对与人头发直径小1000倍左右的机械系统产生影响。3。描述动物和人类的神经发育,特别是神经元之间的联系丧失以及神经联系的加强和弱化导致神经回路学习各种功能。该项目将有助于在现代理论方法中培训学生和验证后的问题。跨学科边界的影响。技术摘要奖将支持理论研究和教育,以开发和应用统计物理方法在材料科学和生物物理学中的各种问题上的发展和应用。 PI将解决挑战理论的问题,并导致与实验的吸引力。所解决的问题包括近乎障碍和收缩的空间遗传学,薄热壳的软凝结物理学以及控制稀疏网络中定位的非线性定位动态的特征函数和特征值的理论。融合了遗传漂移,突变,迁移以及竞争与合作的非平衡统计动力学和种群遗传学在许多物种的进化史上,尤其是在固体表面上起着至关重要的作用。例子包括入侵物种的迁移或动物组织的细菌入侵。使用非平衡统计动力学和种群遗传学的工具,PI将研究这些现象如何影响含有障碍的空间培养基中的遗传谱系。由于生物生物通常不会在混合良好的测试管或无特征的培养皿中长大,因此重要的是要了解它们在存在环境不均匀性的情况下的行为。 PI对热壳的研究建立在薄板和壳的“极端力学”上,其特征是高度非线性的绒毛-Von Karman方程。热激发球形壳的背景曲率相对于平板提出了新的挑战,这些挑战将通过概括图形求和和重新归一化的方法来解决,这些方法已证明对薄板聚合物有用。最后,该项目将调查在强烈的非热矩阵(涉及兴奋性和抑制性连接)中的定向定位和相关的非平衡动力学,这些动力在简单的相互作用生态系统和稀疏神经网络的简单模型中自然而然地出现。 PI的理论研究将决定如何控制自发活性并诱导响应变化,而抑制性与兴奋性连接的比率增加,并且对于特定方向传递信息的偏差,如何控制自发活性和诱导的响应变化。 这项研究本质上是强烈的跨学科,可以为控制人类病原体入侵,药物输送策略以及人类和动物神经发育提供见解。此外,该项目将有助于在现代理论方法中培训学生和博士后,并具有广泛的适用性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Nelson其他文献

Dimension reduction summaries for balanced contrasts
平衡对比的降维总结
Increasing Student Responsibility and Active Learning in an Undergraduate Capstone Finance Course.
在本科顶点金融课程中增强学生的责任感和主动学习。
Wood Gasification: A Promising Strategy to Extend Fuel Reserves after Global Catastrophic Electricity Loss
木材气化:全球灾难性断电后扩大燃料储备的一项有前景的策略
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Nelson;Alexey Turchin;David Denkenberger
  • 通讯作者:
    David Denkenberger
Facilitating Higher Order Learning: Examining Student Outcomes after a Course Redesign
促进高阶学习:检查课程重新设计后的学生成果
  • DOI:
    10.22004/ag.econ.302618
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    A. Josephson;Lawrence DeBoer;David Nelson;Angelika N. Zissimopoulos
  • 通讯作者:
    Angelika N. Zissimopoulos
Wood Gasification: A Promising Strategy to Extend Fuel Reserves after Global Catastrophic Electricity Loss
木材气化:全球灾难性断电后扩大燃料储备的一项有前景的策略
  • DOI:
    10.3390/biomass4020033
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Nelson;Alexey Turchin;David Denkenberger
  • 通讯作者:
    David Denkenberger

David Nelson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Nelson', 18)}}的其他基金

Investigating Nickel-Catalysed C-P Cross-Coupling
研究镍催化的 C-P 交叉偶联
  • 批准号:
    NE/X00709X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Research Grant
Collaborative Research: MSA: Tree crown economics: testing and scaling a functional trait-based theory
合作研究:MSA:树冠经济学:测试和扩展基于功能性状的理论
  • 批准号:
    2106058
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Mechanisms of tree population collapses in eastern North America: Disentangling causes of abrupt ecological change during the Holocene
合作研究:北美东部树木种群崩溃的机制:解开全新世生态突变的原因
  • 批准号:
    1855822
  • 财政年份:
    2019
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Discovery of a negative feedback mechanism that controls karrikin and KAI2 ligand metabolism in plants
合作研究:发现植物中控制 karrikin 和 KAI2 配体代谢的负反馈机制
  • 批准号:
    1856741
  • 财政年份:
    2019
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Graduate Research Fellowship Program (GRFP)
研究生研究奖学金计划(GRFP)
  • 批准号:
    1840380
  • 财政年份:
    2018
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Fellowship Award
Discovery of a Novel Signal that Enhances Germination and Seedling Growth
发现促进发芽和幼苗生长的新信号
  • 批准号:
    1740560
  • 财政年份:
    2017
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
Discovery of a Novel Signal that Enhances Germination and Seedling Growth
发现促进发芽和幼苗生长的新信号
  • 批准号:
    1557962
  • 财政年份:
    2016
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
CAREER: Karrikin and strigolactone signaling mechanisms in Arabidopsis
职业:拟南芥中的 Karrikin 和独脚金内酯信号传导机制
  • 批准号:
    1737153
  • 财政年份:
    2016
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
Understanding Mechanism and Selectivity in Oxidative Addition to Nickel(0) for Catalytic Cross Coupling
了解镍 (0) 氧化加成催化交叉偶联的机理和选择性
  • 批准号:
    EP/M027678/1
  • 财政年份:
    2015
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Research Grant
CAREER: Karrikin and strigolactone signaling mechanisms in Arabidopsis
职业:拟南芥中的 Karrikin 和独脚金内酯信号传导机制
  • 批准号:
    1350561
  • 财政年份:
    2014
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

​基于自监督学习的医学图像质量迁移反问题理论
  • 批准号:
    12301546
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人机物三元融合环境下的人机合作关键问题研究
  • 批准号:
    62376117
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
圈长分布理论中的若干问题
  • 批准号:
    12371350
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
自然接触对青少年网络问题行为的作用机制及其干预
  • 批准号:
    72374025
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
基于分枝过程的传播回溯问题统计推断研究
  • 批准号:
    12305040
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Organic Bionics: Soft Materials to Solve Hard Problems in Neuroengineering
有机仿生学:解决神经工程难题的软材料
  • 批准号:
    FT230100154
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
    ARC Future Fellowships
Asymptotics of Toeplitz determinants, soft Riemann-Hilbert problems and generalised Hilbert matrices (HilbertToeplitz)
Toeplitz 行列式的渐进性、软黎曼-希尔伯特问题和广义希尔伯特矩阵 (HilbertToeplitz)
  • 批准号:
    EP/X024555/1
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Fellowship
Bayesian inverse problems for soft tissue mechanics
软组织力学的贝叶斯反问题
  • 批准号:
    2596737
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Studentship
Topological and Geometrical Problems in Soft Matter
软物质中的拓扑和几何问题
  • 批准号:
    1262047
  • 财政年份:
    2013
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
Theoretical Problems in Soft Matter and Quantitative Biology
软物质和定量生物学的理论问题
  • 批准号:
    1306367
  • 财政年份:
    2013
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了