CDS&E: Stochastic Isogeometric Analysis by Hierarchical B-Spline Sparse Grids

CDS

基本信息

  • 批准号:
    1607398
  • 负责人:
  • 金额:
    $ 39.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-15 至 2021-06-30
  • 项目状态:
    已结题

项目摘要

A great many complex materials and engineered structures are plagued by variability, that is, uncertainty, due to imprecise knowledge of operating environment, insufficient information about material properties, and intrinsic randomness in manufacturing processes. Conventional modeling and simulation procedures rely on heuristically derived safety factors and do not quantitatively account for the statistical variation of a system response. Consequently, the resulting predictions are either too conservative and overcompensate for uncertainty, or unknowingly risky due to unresolved ambiguities. This project will conduct fundamental research on modeling and simulation of complex systems subject to uncertainty; in other words, new computational methods will be developed to quantify the effect of uncertainty on system response. By addressing uncertainty head-on, effective measures to manage and mitigate uncertainty can be devised. Potential engineering applications include microstructure-property relationship in advanced materials, fatigue and fracture of engineering structures, and design of nanoelectromechanical systems, among others. Beyond engineering, the results from this research will benefit the U.S. economy and society through application in areas where uncertainty quantification plays a vital role, such as energy sciences--nuclear energy, carbon sequestration; statistical physics--medicine, quantum mechanics; geosciences--seismology, reservoir modeling; and bioinformatics--drug delivery, agriculture. This research is multi-disciplinary, involving engineering, applied mathematics, and statistics, and will help broaden participation of underrepresented groups in research as well as positively impact engineering education.The objective of this project is to advance the theory of isogeometric analysis, accompanied by robust numerical algorithms, for uncertainty quantification of a high-dimensional response from complex materials and structures. The effort will involve: (1) new randomized non-uniform rational B-splines (NURBS) for the stochastic matrix equation and NURBS-based random field discretization for a material body; (2) new stochastic isogeometric methods entailing the hierarchical B-spline sparse grids for high-dimensional function interpolation; and (3) new formulae and scalable algorithms for predicting the statistical moments and probability density functions of a complex structural response. The research will bridge geometric modeling, stress analysis, and stochastic simulation by interacting natively upon the same mathematical building blocks, forming a seamless uncertainty quantification pipeline of the future. Due to innovative formulation of the sparse grid interpolation, the resulting stochastic method will be efficiently implemented regardless of the size of an uncertainty quantification problem. New computational algorithms will be generated for efficiently estimating the statistical moments and probability density function of a structural response, including error estimates that will result in a rigorous assessment of the sparse grid approximation. The overall effort will effectively integrate research, education, training, and outreach.
由于对操作环境的不精确了解、材料特性信息不足以及制造过程中固有的随机性,许多复杂材料和工程结构都受到可变性(即不确定性)的困扰。 传统的建模和模拟程序依赖于启发式得出的安全系数,并且不定量地考虑系统响应的统计变化。 因此,由此产生的预测要么过于保守并且对不确定性过度补偿,要么由于未解决的模糊性而在不知不觉中存在风险。 该项目将开展不确定性复杂系统建模与仿真的基础研究;换句话说,将开发新的计算方法来量化不确定性对系统响应的影响。通过正面解决不确定性,可以设计出管理和减轻不确定性的有效措施。 潜在的工程应用包括先进材料的微观结构-性能关系、工程结构的疲劳和断裂以及纳米机电系统的设计等。 除了工程之外,这项研究的结果还将通过在不确定性量化发挥重要作用的领域中的应用,使美国经济和社会受益,例如能源科学——核能、碳封存;统计物理学——医学、量子力学;地球科学——地震学、油藏建模;和生物信息学——药物输送、农业。 这项研究是多学科的,涉及工程、应用数学和统计学,将有助于扩大代表性不足的群体对研究的参与,并对工程教育产生积极影响。该项目的目标是推进等几何分析理论,同时强大的数值算法,用于复杂材料和结构的高维响应的不确定性量化。 这项工作将涉及:(1)用于随机矩阵方程的新随机非均匀有理 B 样条(NURBS)以及基于 NURBS 的材料体随机场离散化; (2)新的随机等几何方法需要分层B样条稀疏网格进行高维函数插值; (3)用于预测复杂结构响应的统计矩和概率密度函数的新公式和可扩展算法。 该研究将通过在相同的数学构建块上进行本地交互,在几何建模、应力分析和随机模拟之间架起桥梁,形成未来的无缝不确定性量化管道。 由于稀疏网格插值的创新公式,无论不确定性量化问题的大小如何,所得到的随机方法都将得到有效实施。 将生成新的计算算法,用于有效估计结构响应的统计矩和概率密度函数,包括误差估计,这将导致对稀疏网格近似的严格评估。 整体努力将有效整合研究、教育、培训和推广。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sharif Rahman其他文献

Frequency of COVID-19 Infection in Patients with Sudden Loss of Smell
嗅觉突然丧失患者感染 COVID-19 的频率
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.1
  • 作者:
    Md Harun Ar Rashid Talukder;Sharif Rahman;A. Taous;Md. Abul Hasnat Joarder
  • 通讯作者:
    Md. Abul Hasnat Joarder

Sharif Rahman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sharif Rahman', 18)}}的其他基金

Novel Computational Methods for Design Under Uncertainty with Arbitrary Dependent Probability Distributions
具有任意相关概率分布的不确定性设计的新颖计算方法
  • 批准号:
    2317172
  • 财政年份:
    2023
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
High-Dimensional Stochastic Design Optimization by Spline Dimensional Decomposition
通过样条维分解进行高维随机设计优化
  • 批准号:
    1933114
  • 财政年份:
    2019
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Stochastic Optimization for Design under Uncertainty with Dependent Probability Measures
具有相关概率测量的不确定性下设计的随机优化
  • 批准号:
    1462385
  • 财政年份:
    2015
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Novel Computational Methods for Solving Random Eigenvalue Problems
解决随机特征值问题的新颖计算方法
  • 批准号:
    1130147
  • 财政年份:
    2011
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Reliability-Based Design Optimization of Large-Scale Complex Systems
大型复杂系统基于可靠性的设计优化
  • 批准号:
    0969044
  • 财政年份:
    2010
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
A New Decomposition Method for Solving Stochastic Eigenvalue Problems in Computational Dynamics
求解计算动力学中随机特征值问题的新分解方法
  • 批准号:
    0653279
  • 财政年份:
    2007
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Fatigue Durability and Reliability of Functionally Graded Materials
功能梯度材料的疲劳耐久性和可靠性
  • 批准号:
    0409463
  • 财政年份:
    2004
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Development of New Dimension-Reduction Methods for Reliability, Simulation, and Design of Complex Engineering Systems
开发复杂工程系统可靠性、仿真和设计的新降维方法
  • 批准号:
    0355487
  • 财政年份:
    2004
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Continuing Grant
Probabilistic Simulation of Fracture by Meshless Methods
无网格方法的断裂概率模拟
  • 批准号:
    9900196
  • 财政年份:
    1999
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Continuing Grant
CAREER: Stochastic Fracture Mechanics for Nonlinear Structures
职业:非线性结构的随机断裂力学
  • 批准号:
    9733058
  • 财政年份:
    1998
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant

相似国自然基金

时空随机耦合下规模化分布式资源动态聚合与梯级协同调控方法研究
  • 批准号:
    52377095
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
随机密度泛函理论的算法设计和分析
  • 批准号:
    12371431
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于光子晶体光纤随机光栅阵列的动态准分布式矢量磁场传感研究
  • 批准号:
    62375029
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
源于随机行人碰撞事故边界反求的头部损伤评价准则及风险预测
  • 批准号:
    52372348
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
随机时变相位低相干宽带激光抑制受激拉曼散射的动理学研究
  • 批准号:
    12305265
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Large Graph Limits of Stochastic Processes on Random Graphs
随机图上随机过程的大图极限
  • 批准号:
    EP/Y027795/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Research Grant
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
  • 批准号:
    EP/Y033507/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Research Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Stochastic processes in random environments with inhomogeneous scaling limits
具有不均匀缩放限制的随机环境中的随机过程
  • 批准号:
    24K06758
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了