Ionic Polyimides: Design, Synthesis, Characterization and Modeling of a Versatile Material Platform for Membrane Separations
离子聚酰亚胺:用于膜分离的多功能材料平台的设计、合成、表征和建模
基本信息
- 批准号:1605411
- 负责人:
- 金额:$ 38.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal Number: 1605411, PI: Bara, J.E.Title: Engineering Advanced Polymer Materials as Membranes for Energy Efficient Gas SeparationsGas separations such as air separation (oxygen/nitrogen), carbon dioxide/methane in natural gas, and syngas (hydrogen/carbon monoxide) are important components of industrial chemical processes that produce many of the most economically important materials vital for the Nation's economy and well being. Traditionally, these separations have been carried out using well-established, but energy intensive operations such as distillation or absorption and stripping processes. Use of polymer membranes offers an alternative approach to perform these separations in an energy efficient manner and with lower investment cost. However, gaps still exist that block the wider use of polymer membranes technologies. This project will provide the fundamental research that is needed to understand the role of polymer structure and chemistry on performance attributes such as enhanced throughput, increased product purity and long membrane lifetimes. Through the use of synthetic chemistry, polymer engineering, and computer modeling, this project will combine the most important structural elements from the separate classes of polymer materials into unique and unprecedented polymer structures that possess the desirable properties of each individual material while aiming to eliminate or minimize the respective limitations. Investigation of the new polymers being developed in this project will open a vast new library of materials for use in a variety of engineering applications. Furthermore, the computer simulations being employed will advance the ways in which researchers visualize and understand polymeric materials at the molecular level. This project will train graduate and undergraduate students to work in a synergistic experimental and computational environment, an important aspect of 21st century research. This project will also involve outreach activities centered around 3-D printing and mobile apps for smartphones to inform a wider range of students on concepts in engineering using tools and games that they are familiar with.The key objectives of this research are to experimentally and computationally understand the structure-property-performance relationships underlying ionic polyimide polymer membranes for gas separations. This work will assess the utility of ionic polyimides across several key gas pairs related to energy production and greenhouse gas emissions. By combining elements of polyimides, ionic liquids, polymers of intrinsic microporosity and ligands used in metal organic frameworks, the ionic polyimide design strategy is completely unexplored and provides the ability to control and improve polymer properties such as fractional free volume (FFV) based on non-covalent supramolecular assembly driven by coulombic attractions, which may also assist in slowing/stopping polymer aging. The fundamental understanding of ionic polyimide performance will be enhanced with the development of unique molecular-level simulation models. Three different levels of model resolution will be employed (quantum mechanics, molecular dynamics, and kinetic Monte Carlo) in order to build a comprehensive membrane model with explicit gas/polymer/gas interfaces. This will move the modeling field a significant step closer towards realistic representations of the experimental systems, allowing the description of gradient-driven flow, similar to the pressure-drop environment associated with actual industrial gas separation processes. The success of this project will translate to major advancements in the ability to build nanostructured polymer membranes, for lower energy and cost separations. Furthermore, ionic polyimides are likely to be desirable for many other applications based on the well-known broad utility of conventional polyimides as high-performance polymers.
建议编号:1605411,PI:BARA,J.E。title:工程高级聚合物材料作为膜,用于节能气体分离的膜,例如空气分离(氧气/氮),天然气中的二氧化碳/甲烷和syngas和syngas(氢/碳氧化物)是工业化学过程的重要组成部分,它们生产许多对国家经济和福祉至关重要的最重要的材料。传统上,这些分离是使用公认的,但能源密集型操作(例如蒸馏,吸收和剥离过程)进行的。使用聚合物膜提供了一种替代方法,以节能方式和较低的投资成本进行这些分离。但是,仍然存在阻止聚合物膜技术更广泛使用的差距。该项目将提供基础研究,以了解聚合物结构和化学对性能属性的作用,例如增强的吞吐量,增强产品纯度和较长的膜寿命。通过使用合成化学,聚合物工程和计算机建模,该项目将将来自单独的聚合物材料类别的最重要的结构元素结合到具有独特和前所未有的聚合物结构中,这些结构具有每种材料的理想性能,同时旨在消除或消除或消除各个材料最小化各自的局限性。对该项目开发的新聚合物的调查将为各种工程应用程序开放庞大的新材料库。 此外,所采用的计算机模拟将推动研究人员在分子水平上可视化和理解聚合物材料的方式。 该项目将培训毕业生和本科生在协同的实验和计算环境中工作,这是21世纪研究的重要方面。 该项目还将涉及以3D打印和智能手机移动应用程序为中心的外展活动,以便使用他们熟悉的工具和游戏来告知更多学生的工程概念。这项研究的关键目标是在实验和计算上进行了解用于气体分离的离子聚酰亚胺聚合物膜的结构质体性关系。这项工作将评估与能源生产和温室气体排放相关的几个关键气体成对的离子聚酰亚胺的效用。 通过将聚酰亚胺,离子液体,内在微孔度的聚合物和用于金属有机框架中使用的配体的聚合物的元素结合,离子聚酰亚胺设计策略是完全未探索的,并提供了基于非分数自由体积(FFV)的能力,并提供了能力 - 由库仑景点驱动的含量超分子组件,这也可能有助于减慢/停止聚合物衰老。通过独特的分子级仿真模型的发展,将增强对离子聚酰亚胺性能的基本理解。将采用三种不同级别的模型分辨率(量子力学,分子动力学和动力学蒙特卡洛),以构建具有显式气体/聚合物/气体接口的综合膜模型。这将使建模场更接近实验系统的现实表示,从而使梯度驱动的流动的描述更加近,类似于与实际工业气体分离过程相关的压力流动环境。该项目的成功将转化为建立纳米结构聚合物膜的能力,以降低能源和成本分离的能力。 此外,基于许多其他应用程序,基于常规聚酰亚胺作为高性能聚合物的广泛效用,离子聚酰亚胺可能是可取的。
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Molecular-level analysis of the wetting behavior of imidazolium-based ionic liquids on bismuth telluride surfaces
- DOI:10.1016/j.ces.2019.115270
- 发表时间:2020-01
- 期刊:
- 影响因子:4.7
- 作者:H. Atkinson;J. Bara;C. Heath Turner
- 通讯作者:H. Atkinson;J. Bara;C. Heath Turner
Experimental Densities and Calculated Fractional Free Volumes of Ionic Liquids with Tri- and Tetra-substituted Imidazolium Cations
三取代和四取代咪唑鎓阳离子离子液体的实验密度和计算的自由体积
- DOI:10.1021/acs.jced.7b01033
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Yue, Shuwen;Roveda, John D.;Mittenthal, Max S.;Shannon, Matthew S.;Bara, Jason E.
- 通讯作者:Bara, Jason E.
Ionic Polyimides: Hybrid Polymer Architectures and Composites with Ionic Liquids for Advanced Gas Separation Membranes
- DOI:10.1021/acs.iecr.7b00462
- 发表时间:2017-05-03
- 期刊:
- 影响因子:4.2
- 作者:Mittenthal, Max S.;Flowers, Brian S.;Daly, Daniel T.
- 通讯作者:Daly, Daniel T.
Molecular analysis of selective gas adsorption within composites of ionic polyimides and ionic liquids as gas separation membranes
- DOI:10.1016/j.chemphys.2018.08.039
- 发表时间:2019-01
- 期刊:
- 影响因子:2.3
- 作者:A. Abedini;Ellis R. Crabtree;J. Bara;C. Turner
- 通讯作者:A. Abedini;Ellis R. Crabtree;J. Bara;C. Turner
Solubility and diffusivity of CO2 in ionic polyimides with [C(CN)3]x[oAc]1−x anion composition
- DOI:10.1016/j.commatsci.2019.109468
- 发表时间:2020-03
- 期刊:
- 影响因子:3.3
- 作者:J. Szala-Bilnik;Ellis R. Crabtree;A. Abedini;J. Bara;C. Turner
- 通讯作者:J. Szala-Bilnik;Ellis R. Crabtree;A. Abedini;J. Bara;C. Turner
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Bara其他文献
Virtual Special Issue on Chemical Engineering under Extreme Conditions
极端条件下化学工程虚拟特刊
- DOI:
10.1021/acs.iecr.3c04515 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Aaron W. Thornton;Jason Bara - 通讯作者:
Jason Bara
Jason Bara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Bara', 18)}}的其他基金
Collaborative Research: Rational Design of Ionene + Ionic Liquid Membranes Based on Understanding Gas Transport on Different Length Scales
合作研究:基于不同长度尺度气体传输的紫罗烯离子液体膜的合理设计
- 批准号:
2312000 - 财政年份:2023
- 资助金额:
$ 38.7万 - 项目类别:
Standard Grant
EFRI E3P: CAS: Transformative Upcycling of Polymers by Activating Chemistries
EFRI E3P:CAS:通过活化化学物质实现聚合物的转型升级循环
- 批准号:
2132133 - 财政年份:2021
- 资助金额:
$ 38.7万 - 项目类别:
Standard Grant
IRES Track 1: Innovative Macromolecular & Polymer Research Experience in San Sebastian (IMPRESS)
IRES Track 1:创新高分子
- 批准号:
2107325 - 财政年份:2021
- 资助金额:
$ 38.7万 - 项目类别:
Standard Grant
REU Site: Interdisciplinary Application of Advanced Polymers for Engineering Innovations
REU 网站:先进聚合物在工程创新中的跨学科应用
- 批准号:
1851974 - 财政年份:2019
- 资助金额:
$ 38.7万 - 项目类别:
Standard Grant
Experimental & Computational Design of High-Performance Polymer Membranes for CO2 Capture
实验性的
- 批准号:
1159397 - 财政年份:2012
- 资助金额:
$ 38.7万 - 项目类别:
Standard Grant
相似国自然基金
非偏振光诱导高光敏性聚酰亚胺液晶取向材料的分子设计和制备
- 批准号:22375135
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
聚酰亚胺纤维纸基材料分级结构设计及高温气体过滤机制研究
- 批准号:22378248
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
聚酰亚胺纤维纸基材料分级结构设计及高温气体过滤机制研究
- 批准号:22378248
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
序列结构明确的聚酰亚胺分子设计与制备及其性能研究
- 批准号:52303010
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高频低介电柔性透明聚酰亚胺的设计合成与性能研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Changes in Aggregation of Polyimides with Microporosity under High Temerature & Pressure
高温下微孔聚酰亚胺聚集体的变化
- 批准号:
17F16046 - 财政年份:2017
- 资助金额:
$ 38.7万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Novel ultra-low-modulus flame retardant polyimides for cover layer materials
用于覆盖层材料的新型超低模量阻燃聚酰亚胺
- 批准号:
23750260 - 财政年份:2011
- 资助金额:
$ 38.7万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development of functional polyimides for printabe electronics
用于印刷电子产品的功能性聚酰亚胺的开发
- 批准号:
23550251 - 财政年份:2011
- 资助金额:
$ 38.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of the Emission Mechanism and Property Control of Highly Fluorescent Polyimides via Application of High Static Pressure
高静压高荧光聚酰亚胺的发射机理和性能控制研究
- 批准号:
16350122 - 财政年份:2004
- 资助金额:
$ 38.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of High Temperature Polymers Possessing Low Dielectric Constant, Low Coefficient of Thermal Expansion, and High Transparency and Their Application to Electronic Devices.
低介电常数、低热膨胀系数、高透明性高温聚合物的开发及其在电子器件中的应用。
- 批准号:
16550179 - 财政年份:2004
- 资助金额:
$ 38.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)