Topics in Applied Nonlinear Analysis: Recent Advances and New Trends
应用非线性分析主题:最新进展和新趋势
基本信息
- 批准号:1601475
- 负责人:
- 金额:$ 3.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award will provide support for participants of the conference on "Topics in Applied Nonlinear Analysis: Recent Advances and New Trends," to be held at the Center for Nonlinear Analysis (CNA) at Carnegie Mellon University, Pittsburgh, in July 18-20, 2016. The conference will be devoted to the topics of applied analysis that in many ways revolutionized the field, especially for our understanding of behavior of materials and design of materials with desired properties. These areas are of critical importance to maintaining US leadership in science and technology as evidenced, for instance, by the recently launched, multi-agency Materials Genome Initiative. The conference will continue the CNA tradition of offering extraordinary networking and training opportunities for students and junior researchers to interact with a remarkable group of leading national and international researchers in applied analysis. This conference will provide an exceptional venue for top researchers in applied mathematics and in materials science to interact and share recent advances with a diverse audience. The impact of the conference is expected in both the mathematical and engineering communities. Detailed plans have been made to help recruit a diverse group of participants from the scientific community, including women and minorities. Scientific and social activities will be organized to give young trainees exposure and promote their excellence. These include a poster session with awards for four best posters, identified by a group of judges selected from top experts in both fields. The results of the conference will be disseminated by means of a dedicated website featuring video recordings of all invited presentations: https://www.math.cmu.edu/CNA/kinderlehrer75/index.html This conference will bring under one umbrella contemporary trends in nonlinear analysis, emphasizing two scientific areas where the interplay between the classical and the modern, the theoretical and the applied in analysis has been especially prominent: (1) Optimal Transport and (2) Mathematics of Materials. Among others, the topics will include: - Recent advances in variational inequalities, non-convex variational problems, Gamma-convergence and optimal transport;- Applications to PDE;- Modeling and Analysis of Problems in Materials Science: materials microstructure and design of smart materials;- Computational Methods with Application to Problems in Materials Science and Mathematical Biology: recent developments in Finite Element Methods, Virtual Element Methods and Quasi-Continuum Methods.New collaborations that are likely to emerge from this activity will have a potential to catalyze research at the interface between theoretical/applied partial differential equations and various engineering disciplines, and will result in cross-pollination of ideas.
该奖项将为“应用非线性分析主题:最新进展和新趋势”会议的参与者提供支持,该会议将于 7 月 18 日至 20 日在匹兹堡卡内基梅隆大学非线性分析中心 (CNA) 举行, 2016 年。会议将专门讨论应用分析的主题,这些主题在许多方面彻底改变了该领域,特别是对于我们对材料行为的理解以及具有所需性能的材料的设计。这些领域对于维持美国在科学技术领域的领先地位至关重要,最近启动的多机构材料基因组计划就证明了这一点。此次会议将延续 CNA 的传统,为学生和初级研究人员提供非凡的交流和培训机会,让他们与应用分析领域的国内外领先研究人员进行互动。此次会议将为应用数学和材料科学领域的顶尖研究人员提供一个绝佳的场所,与不同的观众互动并分享最新进展。预计这次会议将在数学界和工程界产生影响。已经制定了详细的计划,以帮助招募来自科学界的多元化参与者,包括女性和少数族裔。将组织科学和社会活动,让年轻学员接触并促进他们的卓越表现。其中包括海报会议,由从两个领域的顶级专家中选出的一组评委评选出四张最佳海报。会议结果将通过一个专门网站传播,该网站包含所有受邀演讲的视频录制:https://www.math.cmu.edu/CNA/kinderlehrer75/index.html 本次会议将汇集当代趋势在非线性分析中,强调古典与现代、理论与应用分析之间相互作用尤为突出的两个科学领域:(1)最优传输和(2)材料数学。 其中,主题将包括: - 变分不等式、非凸变分问题、伽马收敛和最优输运方面的最新进展; - 偏微分方程的应用; - 材料科学问题的建模和分析:材料微观结构和智能材料设计;- 应用于材料科学和数学生物学问题的计算方法:有限元方法、虚拟元素方法和准连续方法的最新发展。可能出现的新合作这项活动将有可能促进理论/应用偏微分方程与各种工程学科之间的交叉研究,并将导致思想的交叉授粉。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irene Fonseca其他文献
Higher order Ambrosio–Tortorelli scheme with non-negative spatially dependent parameters
具有非负空间相关参数的高阶 Ambrosio-Tortorelli 方案
- DOI:
10.1515/acv-2021-0071 - 发表时间:
2023 - 期刊:
- 影响因子:1.7
- 作者:
Irene Fonseca;Pan Liu;Xin Yang Lu - 通讯作者:
Xin Yang Lu
Structured Deformations as Energy Minimizers in Models of Fracture and Hysteresis
结构变形作为断裂和磁滞模型中的能量最小化器
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Rustum Choksi;G. Piero;Irene Fonseca;David Owen - 通讯作者:
David Owen
Manifold constrained variational problems
流形约束变分问题
- DOI:
10.1007/s005260050137 - 发表时间:
1999 - 期刊:
- 影响因子:2.1
- 作者:
B. Dacorogna;Irene Fonseca;Jan Malý;K. Trivisa - 通讯作者:
K. Trivisa
Irene Fonseca的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irene Fonseca', 18)}}的其他基金
Variational Methods for Materials and Imaging
材料和成像的变分方法
- 批准号:
2205627 - 财政年份:2022
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant
Mathematics of Microstructure in Origami, Robotics, and Electrochemistry
折纸、机器人和电化学中的微观结构数学
- 批准号:
2108784 - 财政年份:2021
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant
Variational Methods for Materials Science and Mathematical Imaging
材料科学和数学成像的变分方法
- 批准号:
1906238 - 财政年份:2019
- 资助金额:
$ 3.16万 - 项目类别:
Continuing Grant
Variational Methods for Materials and Imaging Sciences
材料和成像科学的变分方法
- 批准号:
1411646 - 财政年份:2014
- 资助金额:
$ 3.16万 - 项目类别:
Continuing Grant
PIRE: Science at the Triple Point Between Mathematics, Mechanics and Materials Science
PIRE:数学、力学和材料科学之间的三重点科学
- 批准号:
0967140 - 财政年份:2011
- 资助金额:
$ 3.16万 - 项目类别:
Continuing Grant
Variationals Methods in Imaging and in Materials
成像和材料中的变分方法
- 批准号:
0905778 - 财政年份:2009
- 资助金额:
$ 3.16万 - 项目类别:
Continuing Grant
Center for Nonlinear Analysis: Research and Training in Applied Mathematics
非线性分析中心:应用数学研究和培训
- 批准号:
0635983 - 财政年份:2007
- 资助金额:
$ 3.16万 - 项目类别:
Continuing Grant
U.S.-Chile Workshop: PDEs-Preparatory Workshops; Pittsburgh, Pennsylvania; March 2006; Santiago, Chile; January 2007
美国-智利研讨会:PDE-准备研讨会;
- 批准号:
0536756 - 财政年份:2005
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant
Variational Problems and their Applications
变分问题及其应用
- 批准号:
0401763 - 财政年份:2004
- 资助金额:
$ 3.16万 - 项目类别:
Continuing Grant
Center for Nonlinear Analysis: Research and Training in Applied Mathematics
非线性分析中心:应用数学研究和培训
- 批准号:
0405343 - 财政年份:2004
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant
相似国自然基金
复杂非线性系统的预设性能鲁棒输出调节问题及其应用
- 批准号:62373156
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
Banach空间上非交换的非线性算子拓扑半群的遍历理论及其应用
- 批准号:12371140
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
复杂环境下非线性q梯度自适应滤波方法与应用研究
- 批准号:62301292
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
随机非线性复杂系统的拓扑结构及其在交叉学科中的应用
- 批准号:12375034
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
耗散加强理论在非线性系统与随机抽样中的应用
- 批准号:12301283
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Applied Analysis for Emergent Nonlinear Wave Phenomena
突现非线性波现象的应用分析
- 批准号:
2108029 - 财政年份:2021
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant
Deep Learning for Dynamical System Identification for Nonlinear Model Predictive Control applied to Renewable Energy and Energy Efficiency
用于可再生能源和能源效率的非线性模型预测控制动态系统辨识的深度学习
- 批准号:
555943-2020 - 财政年份:2020
- 资助金额:
$ 3.16万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Breather and Soliton Gases for the Focusing Nonlinear Schrodinger Equation: Theoretical and Applied Aspects
用于聚焦非线性薛定谔方程的呼吸气体和孤子气体:理论和应用方面
- 批准号:
2009647 - 财政年份:2020
- 资助金额:
$ 3.16万 - 项目类别:
Continuing Grant
On the Dynamics of Nonlinear Systems in Applied Sciences: From Theory, Computations, and Experiments to Insights
应用科学中的非线性系统动力学:从理论、计算、实验到见解
- 批准号:
2008568 - 财政年份:2020
- 资助金额:
$ 3.16万 - 项目类别:
Standard Grant
Bifurcation theory as applied to nonlinear aeroelastics of wind turbine blades.
分岔理论应用于风力涡轮机叶片的非线性气动弹性。
- 批准号:
2268080 - 财政年份:2019
- 资助金额:
$ 3.16万 - 项目类别:
Studentship