CAREER: Dielectric Screening - From First Principles to Mesoscale
职业:介电屏蔽 - 从第一原理到介观尺度
基本信息
- 批准号:1555153
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NONTECHNICAL SUMMARYThis CAREER award supports research and education in designing and discovering novel optical materials using computer simulations. The quantum mechanical nature of atoms and electrons governs the behavior of materials at microscopic length- and time scales, but at large scales a fully atomistic approach is intractable. Computer simulations that bridge different length scales carry the promise of bringing fundamental research closer to manufacturing: New materials and technological applications could be developed faster and cheaper. That is particularly true for optical materials that are, for instance, needed for photovoltaic devices and energy production, displays, and novel efficient sensors for biological and medical applications.In this project, the research team seeks to develop an approach for computational design and discovery of optical materials across multiple length scales. The researchers will improve approximations that are used to achieve a quantum mechanical description of optical absorption. This in turn will enable the team to successfully describe materials with strong interactions between electrons and ions, a subject of intense current interest. Based on the results of these predictive simulations, the team will abandon the atomistic resolution of the model in order to simulate optical materials that are structured at nanoscale dimensions. The team will incorporate data from recently developed public online databases into the computational framework aiming to discover new candidate materials and investigate their suitability for modern optical applications. The input and output research data sets will be made publicly available for advanced verification and validation, and possibly unforeseen uses, e.g. in data-mining.While the broader availability of supercomputers transforms how modern research is done, skilled, interdisciplinary researchers are becoming an essential component. For that reason, the research project is tightly integrated with educational activities to train the next-generation workforce at the nexus of materials and computer science. The PI will incorporate computer simulations into the undergraduate curriculum at the University of Illinois at Urbana-Champaign, and develop computational learning modules that can be directly used in the classroom. The PI will also build an interdisciplinary team of undergraduate researchers to develop virtual-reality-based techniques for education and exciting outreach to a large audience, which includes high school and undergraduate students. This will be achieved by new techniques for interactive visualization of simulation results in three dimensions using a smartphone. All codes and implementations developed for research, the computational modules for education, and the virtual-reality apps for education and outreach in high schools will be documented and made accessible to the broader research and education community.TECHNICAL SUMMARYThis CAREER award supports research and education in the development of a computational materials science framework with predictive power across multiple length scales. The framework will enable the research team to accurately describe optical properties and allow for computer-aided design and discovery of novel optical materials. The researchers will extend presently used first-principles quantum-mechanical techniques to overcome limitations that lead to large uncertainties for optical absorption spectra, and especially for excitonic effects in polar materials. They will achieve multiscale predictions for nanostructured materials by solving Maxwell equations, and they will develop approaches to screen online data repositories for excited-state properties. This framework will allow the design and discovery of novel optical materials, entirely based on computer simulations.To achieve the goals of this project, the research team will develop detailed understanding of complicated electron-electron and electron-ion interactions based on parameter-free quantum-mechanical simulations. They will improve the description of dielectric screening by accounting for contributions from free carriers and the lattice, overcoming uncertainties for novel polar materials. Using these results in Maxwell-equation-based modeling of nanostructured materials eliminates the dependence on input from experiment, and extends the atomistic first-principles simulations into the nanoscale regime. The team will use existing data from large density-functional theory based online databases to learn about excited-state properties, and to facilitate the discovery of new optical materials within tens of thousands of available datasets. This project will develop generally applicable techniques and use them to understand polar materials with desirable characteristics, e.g. for plasmonic applications.While the broader availability of supercomputers transforms how modern research is done, skilled, interdisciplinary researchers are becoming an essential component. For that reason, the research project is tightly integrated with educational activities to train the next-generation workforce at the nexus of materials and computer science. The PI will incorporate computer simulations into the undergraduate curriculum at the University of Illinois at Urbana-Champaign, and develop computational learning modules that can be directly used in the classroom. The PI will also build an interdisciplinary team of undergraduate researchers to develop virtual-reality-based techniques for education and exciting outreach to a large audience, which includes high school and undergraduate students. This will be achieved by new techniques for interactive visualization of simulation results in three dimensions using a smartphone. All codes and implementations developed for research, the computational modules for education, and the virtual-reality apps for education and outreach in high schools will be documented and made accessible to the broader research and education community.
非技术摘要该职业奖支持使用计算机模拟设计和发现新型光学材料的研究和教育。原子和电子的量子力学性质在微观长度和时间尺度上控制着材料的行为,但在大尺度上,完全原子论的方法是棘手的。连接不同长度尺度的计算机模拟有望使基础研究更接近制造:新材料和技术应用可以更快、更便宜地开发。对于光伏设备和能源生产、显示器以及用于生物和医学应用的新型高效传感器等光学材料来说尤其如此。在这个项目中,研究团队寻求开发一种计算设计和发现的方法跨多个长度尺度的光学材料。研究人员将改进用于实现光吸收的量子力学描述的近似值。这反过来将使该团队能够成功描述电子和离子之间具有强相互作用的材料,这是当前人们强烈关注的主题。根据这些预测模拟的结果,该团队将放弃模型的原子分辨率,以模拟纳米级尺寸结构的光学材料。该团队将把最近开发的公共在线数据库中的数据纳入计算框架中,旨在发现新的候选材料并研究它们对现代光学应用的适用性。输入和输出研究数据集将公开用于高级验证和确认,以及可能的不可预见的用途,例如虽然超级计算机的广泛应用改变了现代研究的进行方式,但熟练的跨学科研究人员正在成为一个重要组成部分。因此,该研究项目与教育活动紧密结合,以培训材料和计算机科学领域的下一代劳动力。该PI将把计算机模拟纳入伊利诺伊大学厄巴纳-香槟分校的本科课程中,并开发可直接在课堂上使用的计算学习模块。 PI 还将建立一个由本科生研究人员组成的跨学科团队,开发基于虚拟现实的技术,用于教育和向包括高中生和本科生在内的广大受众进行令人兴奋的推广。这将通过使用智能手机对三维模拟结果进行交互式可视化的新技术来实现。所有为研究而开发的代码和实现、教育计算模块以及高中教育和推广的虚拟现实应用程序都将被记录下来,并可供更广泛的研究和教育界使用。技术摘要该职业奖支持以下领域的研究和教育:开发具有跨多个长度尺度的预测能力的计算材料科学框架。该框架将使研究团队能够准确描述光学特性,并允许计算机辅助设计和发现新型光学材料。研究人员将扩展目前使用的第一原理量子力学技术,以克服导致光学吸收光谱,特别是极性材料中的激子效应存在巨大不确定性的限制。他们将通过求解麦克斯韦方程实现纳米结构材料的多尺度预测,并将开发筛选在线数据存储库的激发态特性的方法。该框架将允许完全基于计算机模拟来设计和发现新型光学材料。为了实现该项目的目标,研究团队将基于无参数量子对复杂的电子-电子和电子-离子相互作用进行详细的理解-机械模拟。他们将通过考虑自由载流子和晶格的贡献来改进介电屏蔽的描述,克服新型极性材料的不确定性。在基于麦克斯韦方程的纳米结构材料建模中使用这些结果消除了对实验输入的依赖,并将原子第一原理模拟扩展到纳米尺度范围。该团队将使用来自基于大型密度泛函理论的在线数据库的现有数据来了解激发态特性,并促进在数以万计的可用数据集中发现新的光学材料。该项目将开发普遍适用的技术,并利用它们来了解具有所需特性的极性材料,例如虽然超级计算机的广泛应用改变了现代研究的进行方式,但熟练的跨学科研究人员正在成为一个重要组成部分。因此,该研究项目与教育活动紧密结合,以培训材料和计算机科学领域的下一代劳动力。该PI将把计算机模拟纳入伊利诺伊大学厄巴纳-香槟分校的本科课程中,并开发可直接在课堂上使用的计算学习模块。 PI 还将建立一个由本科生研究人员组成的跨学科团队,开发基于虚拟现实的技术,用于教育和向包括高中生和本科生在内的广大受众进行令人兴奋的推广。这将通过使用智能手机对三维模拟结果进行交互式可视化的新技术来实现。所有为研究而开发的代码和实现、教育计算模块以及高中教育和推广的虚拟现实应用程序都将被记录下来,并可供更广泛的研究和教育界使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andre Schleife其他文献
Impact of Computational Curricular Reform on Non-participating Under-graduate Courses: Student and Faculty Perspective
计算课程改革对非参与本科课程的影响:学生和教师的角度
- DOI:
10.18260/1-2--32926 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Mr. Cheng;Cheng;Prof. Andre Schleife;Andre Schleife;R. Prof.Dallas;Trinkle;D. Trinkle;Prof. Jessica A. Krogstad;Prof. Robert Maass;Dr. Pascal Bellon;Prof. Jian Ku;Shang;Dr. Cecilia Leal;Cec ´ ılia Leal;Prof. Matthew West;Matthew West;Prof. Timothy Bretl;Timothy Bretl;Dr. Geoffrey L. Herman;Shengchang Tang - 通讯作者:
Shengchang Tang
Andre Schleife的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andre Schleife', 18)}}的其他基金
Travel: 2023 African School for Electronic Structure Methods and Applications (ASESMA2023)
旅行:2023 年非洲电子结构方法与应用学院 (ASESMA2023)
- 批准号:
2326558 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Travel: 2023 African School for Electronic Structure Methods and Applications (ASESMA2023)
旅行:2023 年非洲电子结构方法与应用学院 (ASESMA2023)
- 批准号:
2326558 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Elements: GPU-accelerated First-Principles Simulation of Exciton Dynamics in Complex Systems
合作研究:要素:复杂系统中激子动力学的 GPU 加速第一性原理模拟
- 批准号:
2209857 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NSCI: SI2-SSE: Time Stepping and Exchange-Correlation Modules for Massively Parallel Real-Time Time-Dependent DFT
合作研究:NSCI:SI2-SSE:大规模并行实时瞬态 DFT 的时间步进和交换相关模块
- 批准号:
1740219 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Understanding Excitons for Lead-Free Perovskite Photovoltaics
了解无铅钙钛矿光伏的激子
- 批准号:
1437230 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
基于扫描探针的纳米复合电介质界面陷阱原位研究
- 批准号:52303296
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向高电介质储能性能的高熵钙钛矿陶瓷的局域缺陷电子结构设计与调控
- 批准号:52362037
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于电介质材料相调控的挠曲电效应增强方法研究
- 批准号:12302244
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
本征低损耗复合电介质材料多级结构构筑与损耗抑制机理研究
- 批准号:52303083
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多层电介质薄膜的摩擦电荷耗散动力学过程研究
- 批准号:52303075
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Validation of novel imaging and molecular tests for early detection of pancreatic cancer through risk-stratified community engagement programs
通过风险分层社区参与计划验证用于早期检测胰腺癌的新型成像和分子测试
- 批准号:
10640704 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Interlayer excitons in 1D-2D heterostructures and its applications
一维-二维异质结构中的层间激子及其应用
- 批准号:
20K15120 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Dielectric Screening in Structured Polymer Electrolytes
职业:结构化聚合物电解质中的介电屏蔽
- 批准号:
1846547 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
3-D quantitative microwave breast imaging system for comparison with MRI
与 MRI 比较的 3D 定量微波乳腺成像系统
- 批准号:
8338866 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
3-D quantitative microwave breast imaging system for comparison with MRI
与 MRI 比较的 3D 定量微波乳腺成像系统
- 批准号:
8166091 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别: