CAREER: Multi-Objective Optimization via Simulation: Theory, Methods, and Parallel Computation
职业:通过仿真进行多目标优化:理论、方法和并行计算
基本信息
- 批准号:1554144
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This Faculty Early Career Development (CAREER) grant is developing theory, methods, and algorithms for decision-making under uncertainty in complex systems that are modeled using computer-based simulations. The specific focus will be on developing implementable algorithms that identify optimal decisions with respect to multiple performance measures. Such problems arise frequently in a variety of applications including finance, energy, transportation, facility location, supply chain management, telecommunication, and healthcare management. Though widespread, these problems are under-studied, and current solution methods may be slow, imprecise, or inaccurate. Developing methods to solve such problems with provable guarantees on speed, precision, and accuracy will enable decision-makers to make better, timely decisions across a variety of disciplines. Society will benefit from improved systems, characterized by increased efficiency and reduced cost. This project also supports the PI's educational goal of disseminating clear and engaging educational materials at the interface of probability and optimization that recruit, train, and retain the next generation of professionals who make decisions under uncertainty.This research will develop theory, methods, and parallel algorithms for solving multi-objective optimization via simulation problems. Multi-objective optimization via simulation problems are nonlinear multi-objective optimization problems in which each objective can only be observed with error as output from a Monte Carlo simulation; a solution to this problem is a non-dominated (Pareto) set. Despite its prevalence and mature development in the analogous deterministic context, multi-objective optimization via simulation problems have seen relatively little theoretical and algorithmic development in the optimization via simulation literature. These problems are difficult to solve because of their complexity: the objective functions can only be estimated with error through potentially expensive Monte Carlo simulation, and the Pareto set often grows in the number of objectives. The proposed research will develop the theoretical underpinnings of estimating Pareto sets in the stochastic context. Specifically, the proposed theory and methods include scaling for dimension reduction, asymptotic approximation, optimization frameworks that retrieve fast convergence rates, and parallel implementation. Such understanding will lead to new algorithmic methods that evolve optimally in a provable sense and to implementable, efficient parallel algorithms for solving these difficult problems.
该学院的早期职业发展(CAREER)资助正在开发理论、方法和算法,用于在使用计算机模拟进行建模的复杂系统的不确定性下进行决策。具体重点是开发可实现的算法,以识别与多种性能指标相关的最佳决策。此类问题在各种应用中经常出现,包括金融、能源、交通、设施选址、供应链管理、电信和医疗保健管理。尽管这些问题很普遍,但尚未得到充分研究,并且当前的解决方法可能很慢、不精确或不准确。开发解决此类问题的方法,并在速度、精度和准确度上提供可证明的保证,将使决策者能够在各个学科中做出更好、及时的决策。社会将从改进的系统中受益,其特点是提高效率和降低成本。该项目还支持 PI 的教育目标,即在概率和优化的界面上传播清晰且引人入胜的教育材料,以招募、培训和保留在不确定性下做出决策的下一代专业人员。这项研究将开发理论、方法和并行方法。通过模拟问题解决多目标优化的算法。通过模拟问题进行的多目标优化是非线性多目标优化问题,其中每个目标只能以蒙特卡罗模拟的输出作为误差来观察;该问题的解决方案是非支配(帕累托)集。尽管在类似的确定性环境中它很流行并且发展成熟,但通过模拟问题进行多目标优化在通过模拟进行优化的文献中理论和算法的发展相对较少。这些问题由于其复杂性而难以解决:目标函数只能通过可能昂贵的蒙特卡罗模拟来估计误差,而且帕累托集的目标数量通常会增加。拟议的研究将发展在随机背景下估计帕累托集的理论基础。具体来说,所提出的理论和方法包括降维缩放、渐近逼近、检索快速收敛速度的优化框架以及并行实现。这种理解将导致新的算法方法在可证明的意义上优化发展,并产生可实现的、高效的并行算法来解决这些难题。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An epsilon-constraint method for integer-ordered bi-objective simulation optimization
- DOI:10.1109/wsc.2017.8247961
- 发表时间:2017-12-03
- 期刊:
- 影响因子:0
- 作者:K. Cooper;S. R. Hunter;K. Nagaraj
- 通讯作者:K. Nagaraj
An Introduction to Multiobjective Simulation Optimization
多目标仿真优化简介
- DOI:10.1145/3299872
- 发表时间:2019-01-24
- 期刊:
- 影响因子:0
- 作者:S. R. Hunter;Eric A. Applegate;V. Arora;Bryan Chong;K. Cooper;Oscar Rincón;Carolina Vivas
- 通讯作者:Carolina Vivas
SCORE Allocations for Bi-objective Ranking and Selection
双目标排名和选择的分数分配
- DOI:10.1145/3158666
- 发表时间:2018-01-03
- 期刊:
- 影响因子:0
- 作者:Guy Feldman;S. R. Hunter
- 通讯作者:S. R. Hunter
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susan Hunter其他文献
Support Surfaces: Definitions and Utilization for Patient Care
支撑表面:患者护理的定义和利用
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:2.4
- 作者:
Patricia A Thompson;Julie W. Anderson;D. Langemo;D. Hanson;Susan Hunter - 通讯作者:
Susan Hunter
Assessing the reliability of key measures in the National Survey on Drug Use and Health using a test-retest methodology
使用重测方法评估全国药物使用和健康调查中关键措施的可靠性
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
J. Kennet;Dicy Painter;Susan Hunter;R. Granger;K. Bowman - 通讯作者:
K. Bowman
Skin Care Protocols for Pressure Ulcers and Incontinence in Long-Term Care: A Quasi-Experimental Study
长期护理中压疮和失禁的皮肤护理方案:一项准实验研究
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:2.4
- 作者:
Patricia A Thompson;D. Langemo;Julie W. Anderson;D. Hanson;Susan Hunter - 通讯作者:
Susan Hunter
Digital Wound Photography: Points to Practice
数字伤口摄影:练习要点
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:2.4
- 作者:
D. Langemo;D. Hanson;Julie W. Anderson;Patricia A Thompson;Susan Hunter - 通讯作者:
Susan Hunter
Susan Hunter的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于人类多元感知特性的全景图像质量客观评价理论与方法
- 批准号:61901205
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于人工智能与多模态MRI技术的慢性腰背痛脑机制、客观评估和疗效预测研究
- 批准号:81971694
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
刺激频率耳声发射对听觉功能频率选择特性的客观检测研究
- 批准号:61271133
- 批准年份:2012
- 资助金额:76.0 万元
- 项目类别:面上项目
基于多光谱舌下图像的舌下络脉诊法客观化研究
- 批准号:61102037
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于3维多尺度复变换的多传感器视频图像融合及性能客观评价研究
- 批准号:61104212
- 批准年份:2011
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Time-Aware Multi-Objective Recommendation in Online Learning Environments
职业:在线学习环境中的时间感知多目标推荐
- 批准号:
2047500 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Robust Identification and Multi-Objective Control Methods for Neuronal Networks Under Uncertainty
职业:不确定性下神经网络的鲁棒识别和多目标控制方法
- 批准号:
1845348 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Multi-Objective Optimization of Sensor Placement for Reliable Monitoring and Control of Structures
职业:多目标优化传感器放置以实现结构的可靠监测和控制
- 批准号:
1750225 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: A Performance-Based Multi-Objective Optimization Framework to Define Innovative Structural Concepts and Support the Seismic Design of Critical Buildings
职业生涯:基于性能的多目标优化框架,用于定义创新结构概念并支持关键建筑的抗震设计
- 批准号:
1351591 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Enhancing Conceptual Design Using Multi-Objective, Dynamically Encoded Genetic Algorithms to Optimize Structural Toplogy, Geometry, and Size
职业:使用多目标动态编码遗传算法增强概念设计,以优化结构拓扑、几何形状和尺寸
- 批准号:
0738618 - 财政年份:2006
- 资助金额:
$ 50万 - 项目类别:
Standard Grant