Continuous-Flow Microfluidic Nanomanufacturing of Nanomedicines
纳米药物的连续流微流控纳米制造
基本信息
- 批准号:1562468
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Nanoparticle-enabled drugs hold enormous potential for improving human health, allowing drug designers to tailor the delivery of therapeutic compounds to specific tissues or cells, and optimize the uptake of drugs into those cells. In particular, the use of lipid vesicles or liposomes as nanoscale drug carriers has resulted in significant advances toward the treatment of a range of cancers. However, the transition of liposomal nanomedicines from the lab to the clinic remains constrained by the lack of nanomanufacturing methods capable of scaling across the full production range. This award will investigate continuous-flow microfluidics technology as a unique scalable approach to bridge this gap. This technology will leverage chemical and physical phenomena across multiple size scales within a continuous-flow microfluidic system, resulting in nanoparticle self-assembly, passive and active drug loading, nanoparticle functionalization, and drug purification and concentration. Individual fluidic modules will be developed and optimized, and sequential modules will be combined in a single continuous-flow nanofactory. The multidisciplinary project will integrate contributions from high school students through graduate researchers, and result in development of a new nanomedicines designed for the treatment of recurrent pediatric neuroblastoma, a high-risk cancer with dismal clinical outcomes.Current techniques for liposomal drug synthesis must be re-engineered at each production scale, introducing manufacturing costs and engineering challenges that present significant barriers to the development of new liposomal drugs. Overcoming this gap is fundamentally a nanomanufacturing challenge. We will develop a multistage microfluidic flow focusing technology as a highly scalable method supporting the full production of liposomal nanomedicines in a continuous-flow process. The studies will yield new insights into the underlying multiscale physics for each processing stage, resulting in improved understanding of the chemophysical processes involved in liposome self-assembly, drug loading, and targeting agent attachment within the microfluidic system. The work will also result in new solutions to the key engineering challenges associated with coupling diverse continuous-flow microfluidic modules for advanced functionalized nanoparticle manufacturing. Performance of the technology will be evaluated using a novel nanomedicine test-bed. Specifically, the award will demonstrate a targeted polypharmaceutical comprising of an amphipathic chemotherapeutic (doxorubicin) together with a lipophilic tyrosine kinase inhibitor (erlotinib) for the treatment of pediatric neuroblastoma. Using this test-bed, a combination of scale-up and scale-out will be explored to provide a unified framework for multi-scale liposomal drug synthesis, vastly increasing the speed and reducing the complexity of nanomedicine manufacturing.
纳米颗粒的药物具有改善人类健康的巨大潜力,使药物设计师可以量身定制治疗化合物向特定的组织或细胞的递送,并优化药物对这些细胞的摄取。特别是,将脂质囊泡或脂质体用作纳米级药物载体已导致对一系列癌症的治疗取得了重大进展。然而,脂质体纳米医学从实验室到诊所的过渡仍然受到缺乏能够在整个生产范围内扩展的纳米制造方法的限制。该奖项将调查连续流微流体技术作为弥合这一差距的独特可扩展方法。这项技术将利用连续流微流体系统中多种大小尺度的化学和物理现象,从而导致纳米颗粒自组装,被动和主动药物加载,纳米颗粒功能化以及药物纯化和浓度。将开发和优化单个流体模块,并将顺序模块组合成单个连续流量纳米效应。多学科项目将通过研究生研究人员通过研究生的贡献,并开发出一种新的纳米药物,旨在治疗复发性的儿科神经母细胞瘤,这是一种高风险的癌症,这是一种高风险的临床效果。具有较低的临床效果。核糖体药物同步的较大范围的制造成本,并引入了质疑,并在制造范围内进行了挑战,并引入了工程,并引入了工程,以使其引入了工程,并构成了工程,并构成了工程的工程。脂质体药物。克服这一差距从根本上是纳米制造挑战。我们将开发一种多阶段的微流体焦点技术作为一种高度可扩展的方法,该方法支持在连续流过程中全面生产脂质体纳米医学。这些研究将为每个处理阶段的基础多尺理物理学提供新的见解,从而提高对脂质体自组装,药物加载和靶向剂的附着在微流体系统中所涉及的化学物理过程的了解。这项工作还将为与高级功能化纳米颗粒制造的各种连续流微流体模块相关的关键工程挑战提供新的解决方案。该技术的性能将使用新型纳米医学测试床进行评估。具体而言,该奖项将展示靶向的多药剂,包括两亲化学治疗疗法(阿霉素)以及亲脂性酪氨酸激酶抑制剂(Erlotinib),用于治疗小学神经细胞瘤。使用此测试床,将探索比例扩大和扩展的组合,为多尺度脂质体药物合成提供一个统一的框架,大大提高了速度并降低了纳米医学制造的复杂性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Don DeVoe其他文献
Don DeVoe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Don DeVoe', 18)}}的其他基金
Scalable Isolation of Therapeutic Bio-nanoparticles Using Microhydrocyclones
使用微水力旋流器大规模分离治疗性生物纳米颗粒
- 批准号:
1950234 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
RoL: EAGER: DESYN-C3: Synthetic Biogenesis of Eukaryotic Cells
RoL:EAGER:DESYN-C3:真核细胞的合成生物发生
- 批准号:
1844299 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Trap Array Chips Enabling Rapid, Automated, and Portable Antibiotic Resistance Screening
陷阱阵列芯片实现快速、自动化和便携式抗生素耐药性筛查
- 批准号:
1609074 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Immunoliposome Formation via Microfluidic Flow Focusing
通过微流体流动聚焦形成免疫脂质体
- 批准号:
0966407 - 财政年份:2010
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
NIRT: Nanofluidic Networks for Single-Molecule Protein Analysis
NIRT:用于单分子蛋白质分析的纳流体网络
- 批准号:
0304318 - 财政年份:2003
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
PECASE: Mechanically Robust Micromechanisms
PECASE:机械稳健的微机械装置
- 批准号:
9875817 - 财政年份:1999
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
相似国自然基金
狭缝微流体挤出印刷厚膜有机太阳能电池工艺中的流动诱导结晶研究
- 批准号:52303247
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
气柱分隔微流体强化浆态合成过程及其流动相似放大方法的研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
微反应器内复合离子液体催化碳四烷基化反应体系流体流动及过程强化研究
- 批准号:22208335
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
气柱分隔微流体强化浆态合成过程及其流动相似放大方法的研究
- 批准号:22278015
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
稠密聚电解质层和pH-调节对微纳通道间非牛顿流体的电动流动及传热传质的影响
- 批准号:12162003
- 批准年份:2021
- 资助金额:37 万元
- 项目类别:地区科学基金项目
相似海外基金
Control of microfluidic flow and development of continuous injection / separation / detection method using connecting tube as separation column
微流体流动控制及以连接管为分离柱的连续进样/分离/检测方法的开发
- 批准号:
22K05160 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Continuous Flow Microfluidic Devices for High-Throughput Synthesis and Formulation of Multifunctional Nano-systems for Enhanced Drug Targeting and Imaging
用于高通量合成和配制用于增强药物靶向和成像的多功能纳米系统的连续流微流体装置
- 批准号:
RGPIN-2016-05785 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual
Continuous Flow Microfluidic Devices for High-Throughput Synthesis and Formulation of Multifunctional Nano-systems for Enhanced Drug Targeting and Imaging
用于高通量合成和配制用于增强药物靶向和成像的多功能纳米系统的连续流微流体装置
- 批准号:
RGPIN-2016-05785 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual
Continuous Flow Microfluidic Devices for High-Throughput Synthesis and Formulation of Multifunctional Nano-systems for Enhanced Drug Targeting and Imaging
用于高通量合成和配制用于增强药物靶向和成像的多功能纳米系统的连续流微流体装置
- 批准号:
RGPIN-2016-05785 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual
Continuous Flow Microfluidic Devices for High-Throughput Synthesis and Formulation of Multifunctional Nano-systems for Enhanced Drug Targeting and Imaging
用于高通量合成和配制用于增强药物靶向和成像的多功能纳米系统的连续流微流体装置
- 批准号:
RGPIN-2016-05785 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Discovery Grants Program - Individual