Collaborative Research: From Loading to Rupture - how do fault geometry and material heterogeneity affect the earthquake cycle?
合作研究:从加载到破裂——断层几何形状和材料异质性如何影响地震周期?
基本信息
- 批准号:1547603
- 负责人:
- 金额:$ 24.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-03-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Analyzing the hazards that accompany large earthquakes requires an understanding of the interplay between the long term motion of tectonic plates and the structural features near active faults. As tectonic plates move and deform, faults (or cracks) between and embedded in the plates do not slide but are locked due to frictional resistance. As time passes (tens to hundreds of years for large earthquakes) the stress on these faults increases. An earthquake rupture occurs when the level of stress resolved on the fault exceeds the frictional resistance (at least in some local region of the fault). Thus modeling the full earthquake cycle (tectonic loading, nucleation, and full evolution of rupture) is challenging because it requires the resolution of many vastly different timescales. Additional challenges arise from the fact that faults are geometrically complex -- with large-scale bends and branches as well as small-scale non-planar features -- and are surrounded by heterogeneous materials including sediments and clays, as well as much stiffer materials such as granite. Furthermore, field observations of faults reveal an abundance of cracks and micro-fractures -- often referred to as a damage zone -- which must often be included in models to produce realistic results. In this project we will develop, validate, and utilize an earthquake cycle model that can rigorously and self-consistently handle complex fault geometries, damage zones, and heterogeneous materials. We will also explore how geometry and heterogeneity affect the earthquake locations, magnitudes, and recurrence intervals. This proposed work benefits the society at large as understanding the impact of complexity on the earthquake cycle directly informs our understanding of seismic hazard.Seismic hazard analysis requires an understanding of the earthquake cycle including the interaction of remote loading and near-fault structure. Currently, no existing models can account for both the interseismic and coseismic periods with complex fault geometries, heterogeneous materials, and plastic deformation. This funding supports the development and application of a numerical model that rigorously accounts for interseismic loading as well as rupture dynamics in both two- and three-dimensions. To capture the effect of slow tectonic loading on the evolution of the stress field, a computationally efficient quasi-static model will be used. As inertial effects become important, the model will transition to a fully dynamic description where the wavefield is modeled along with its interaction with fault interfaces. All stages of the earthquake cycle will be modeled in a single, self-consistent computational and mathematical framework capable of capturing both complex geometries and material descriptions. The group will develop a parallel quasi-static and dynamic rupture modeling environment that handles complex geometries (e.g., branches, bends, and step-overs), general boundary conditions, plastic deformation, and variable material and frictional properties. The investigators will use the developed model to consider how geometry affects nucleation location, recurrence interval, magnitude, and evolution of the near-fault stress field will be studied as well as the role that plasticity and bi-material properties play when all stages of the earthquake cycle are rigorously considered.
分析大地震带来的危害需要了解构造板块的长期运动与活动断层附近的结构特征之间的相互作用。当构造板块移动和变形时,板块之间和嵌入板块中的断层(或裂缝)不会滑动,而是由于摩擦阻力而被锁定。随着时间的推移(大地震需要数十到数百年),这些断层上的应力会增加。当断层上分解的应力水平超过摩擦阻力(至少在断层的某些局部区域)时,就会发生地震破裂。因此,对完整的地震周期(构造载荷、成核和破裂的完整演化)进行建模具有挑战性,因为它需要解决许多截然不同的时间尺度。其他挑战来自以下事实:断层几何形状复杂,具有大规模的弯曲和分支以及小规模的非平面特征,并且被沉积物和粘土等异质材料以及更硬的材料(例如如花岗岩。此外,对断层的现场观察揭示了大量的裂缝和微裂缝(通常称为损坏区域),这些通常必须包含在模型中才能产生真实的结果。在这个项目中,我们将开发、验证和利用地震周期模型,该模型可以严格且自洽地处理复杂的断层几何形状、损坏区域和异质材料。我们还将探讨几何形状和异质性如何影响地震位置、震级和复发间隔。这项工作对整个社会都有好处,因为了解复杂性对地震周期的影响直接影响我们对地震灾害的理解。地震灾害分析需要了解地震周期,包括远程荷载和近断层结构的相互作用。目前,没有任何现有模型可以同时解释具有复杂断层几何形状、异质材料和塑性变形的震间期和同震期。这笔资金支持数值模型的开发和应用,该模型严格考虑震间载荷以及二维和三维破裂动力学。为了捕捉缓慢构造载荷对应力场演化的影响,将使用计算高效的准静态模型。随着惯性效应变得重要,该模型将过渡到完全动态的描述,其中对波场及其与断层界面的相互作用进行建模。地震周期的所有阶段都将在一个单一的、自洽的计算和数学框架中建模,该框架能够捕获复杂的几何形状和材料描述。该小组将开发一个并行的准静态和动态断裂建模环境,用于处理复杂的几何形状(例如分支、弯曲和跨步)、一般边界条件、塑性变形以及可变材料和摩擦特性。研究人员将使用开发的模型来考虑几何形状如何影响成核位置、重现间隔、大小和近断层应力场的演化,以及塑性和双材料特性在所有阶段时所发挥的作用。地震周期被严格考虑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brittany Erickson其他文献
Brittany Erickson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brittany Erickson', 18)}}的其他基金
CAREER: Physics-Informed Deep Learning for Understanding Earthquake Slip Complexity
职业:基于物理的深度学习用于理解地震滑动的复杂性
- 批准号:
2339996 - 财政年份:2024
- 资助金额:
$ 24.18万 - 项目类别:
Continuing Grant
Collaborative Research: Exploring System-Wide Events on Complex Fault Networks using Fully-Dynamic 3D Earthquake Cycle Simulations
协作研究:使用全动态 3D 地震周期模拟探索复杂故障网络上的系统范围事件
- 批准号:
2053372 - 财政年份:2021
- 资助金额:
$ 24.18万 - 项目类别:
Standard Grant
Collaborative Research: From Loading to Rupture - how do fault geometry and material heterogeneity affect the earthquake cycle?
合作研究:从加载到破裂——断层几何形状和材料异质性如何影响地震周期?
- 批准号:
1916992 - 财政年份:2019
- 资助金额:
$ 24.18万 - 项目类别:
Standard Grant
Single-Event and Long-Term Dynamics of Nonplanar Fault Systems
非平面故障系统的单事件和长期动力学
- 批准号:
0948304 - 财政年份:2010
- 资助金额:
$ 24.18万 - 项目类别:
Continuing Grant
相似国自然基金
基于GOx/纳米酶加载的智能级联响应多功能水凝胶在糖尿病骨缺损修复中的研究
- 批准号:82302688
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
等离子体活化水凝胶中活性粒子的加载机理与调控方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基质中单细胞定量力学加载技术与细胞力学信息的原位探测研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
循环加载下微纳晶须中界面演化的准原位原子尺度研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
用于光点击反应的原位环张力光加载亲偶极体及其在生物正交反应中应用的研究
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Gel rupture under simple and dynamic loading: manipulation of failure mode via patterned heterogeneity in soft materials
合作研究:简单动态载荷下的凝胶破裂:通过软材料中的图案异质性操纵失效模式
- 批准号:
2311698 - 财政年份:2023
- 资助金额:
$ 24.18万 - 项目类别:
Continuing Grant
Collaborative Research: RAPID: Identifying the biogeochemical causes of sudden widespread metal loading in streams of the western Brooks Range, Alaska
合作研究:RAPID:确定阿拉斯加布鲁克斯山脉西部溪流中突然大范围金属负载的生物地球化学原因
- 批准号:
2325290 - 财政年份:2023
- 资助金额:
$ 24.18万 - 项目类别:
Standard Grant
Collaborative Research: RAPID: Identifying the biogeochemical causes of sudden widespread metal loading in streams of the western Brooks Range, Alaska
合作研究:RAPID:确定阿拉斯加布鲁克斯山脉西部溪流中突然大范围金属负载的生物地球化学原因
- 批准号:
2325291 - 财政年份:2023
- 资助金额:
$ 24.18万 - 项目类别:
Standard Grant
Collaborative Research: The interplay of nitrogen loading and ecosystem sustainability in threatened wetlands: an extension of the WETFEET project
合作研究:受威胁湿地氮负荷与生态系统可持续性的相互作用:WEFTEET 项目的延伸
- 批准号:
2225000 - 财政年份:2023
- 资助金额:
$ 24.18万 - 项目类别:
Standard Grant
Collaborative Research: The interplay of nitrogen loading and ecosystem sustainability in threatened wetlands: an extension of the WETFEET project
合作研究:受威胁湿地氮负荷与生态系统可持续性的相互作用:WEFTEET 项目的延伸
- 批准号:
2224999 - 财政年份:2023
- 资助金额:
$ 24.18万 - 项目类别:
Standard Grant