Collaborative Research: Lithospheric foundering beneath the Sierra Nevada constrained by analysis of an anomalous Pn shadow zone
合作研究:异常 Pn 阴影区分析限制了内华达山脉下方的岩石圈沉没
基本信息
- 批准号:1547149
- 负责人:
- 金额:$ 7.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mountain ranges are supported by lower than usual densities in the outermost parts of the Earth: that is, a lower density crust, thicker crust, or low densities in the shallowest mantle will support elevated terrain. This project explores how the Sierra Nevada mountains in California came to be supported by the low density materials. Understanding of how higher density materials were removed is still unknown to scientists. Historical observations of peculiarities of such seismic waves originally led seismologists to the erroneous conclusion that the Sierra Nevada had a thick crust; although we know that to not be true, those observations still have not been explained. The researchers suggest that this material likely remains or has been focused in the western part of the mountain range. They will use seismic information to detect whether dense material exists where they predict. This comparison is accomplished by expanding software that can compute seismic waveforms in the presence of complex geologic structures. Thus this project improves our understanding of how mountains can be made as well as improving our seismological toolkit for exploring what happens at the boundary between the crust and mantle in continents.Lithospheric foundering has been invoked to explain orogenesis in a number of regions around the globe, but in most cases the means by which lithosphere founders remains largely unknown. The Sierra Nevada in eastern California is often cited as one of these regions, and hypotheses for how lithosphere foundered there range from lithospheric delamination to localized convective instability. A key piece of evidence for discriminating between these competing hypotheses lies in the presence or absence of certain arc-related lithologies (a.k.a. "arclogite") and the geometry of such dense lithologies beneath the western Sierran foothills. The presence of arclogite should result in large and potentially abrupt changes in the thickness and wavespeed of the lower crust and upper mantle, and these are likely to influence the passage of Pn energy across the Sierra. Indeed, such effects can provide an explanation for a long-lived conundrum in seismology, namely: what is the cause of a Pn shadow zone produced by the Sierra? The specific objective of the project is to apply recently developed full waveform inversion (FWI) techniques to evaluate trial models of the crust and upper mantle beneath the Sierra that may be responsible for the Pn shadow zone. One hypothesis is that arclogitic lithologies are responsible for this zone, and hence that modeling the nature of the zone will allow determination of their geometry and extent beneath the Sierra. This in turn will place constraints on the roles of delamination and convective instability in this region. The primary source of data to be analyzed was collected during the Sierra Nevada Earthscope Project (SNEP) from May 2005 to mid-2007, supplemented by recordings from a dense array of broadband seismometers across Yosemite National Park (~37.8°N) during the summer of 2007. The analysis will combine full waveform modeling of teleseismic receiver functions and surface waves with local and regional (for Pn) arrivals to ensure that any model produced is consistent with observations that are mostly likely to be sensitive to the crust-mantle transition. This project benefits from an abundance of trial models from prior studies in the region, and this approach will be to use these as starting models in a formal joint inversion to examine how well they can explain the Pn shadow zone while still being consistent with teleseismic observations. Ultimately, the study's results will help resolve the role of "arclogite" in lithospheric foundering and hence determine whether delamination of the lithosphere or a convective instability can better explain lithospheric foundering beneath the Sierra.
地球最外层的山脉由低于平常的密度支撑:也就是说,较低密度的地壳、较厚的地壳或最浅地幔的低密度将如何支撑加利福尼亚州的内华达山脉。科学家们仍然不知道如何去除高密度材料。对这种地震波特性的历史观察最初导致地震学家得出了内华达山脉厚度的错误结论。地壳;尽管我们知道这不是真的,但研究人员认为这种物质可能仍然存在或集中在山脉的西部,他们将利用地震信息来探测是否存在致密物质。这种比较是通过扩展软件来完成的,该软件可以在存在复杂地质结构的情况下计算地震波形,因此该项目提高了我们对山脉如何形成的理解,并改进了我们的地震学工具包以探索发生的情况。地壳和地幔之间的边界岩石圈沉没已被用来解释全球许多地区的造山作用,但在大多数情况下,岩石圈沉没的方式仍然很大程度上未知,加利福尼亚州东部的内华达山脉经常被认为是这些地区之一,并且关于岩石圈如何在那里形成的假设范围从岩石圈分层到局部对流不稳定性,区分这些相互竞争的假设的关键证据在于是否存在某些与弧相关的岩性(又称岩石圈)。 “arclogite”)以及塞拉山脉西部山麓下方如此致密岩性的几何形状,弧辉岩的存在应该会导致下地壳和上地幔的厚度和波速发生巨大且潜在的突然变化,而这些可能会影响通道。事实上,这种效应可以解释地震学中一个长期存在的难题,即:内华达山脉产生 Pn 阴影区的原因是什么?最近开发了全波形反演(FWI)技术来评估山脉下方的地壳和上地幔的试验模型,这些模型可能是造成 Pn 阴影区的原因,一个假设是弧逻辑岩性是造成该区域的原因,因此可以对自然进行建模。该区域的分布将允许确定其在山脉下方的几何形状和范围,这反过来又会限制该地区的分层和对流不稳定的作用。要分析的数据的主要来源是在内华达山脉地球范围项目期间收集的。 SNEP) 2005 年 5 月至 2007 年中期,并辅以 2007 年夏季优胜美地国家公园(~37.8°N)上密集的宽带地震仪阵列的记录。该分析将把远震接收器函数和表面波的完整波形建模与本地地震相结合。和区域(对于 Pn)到达,以确保生成的任何模型与最有可能对壳幔转变敏感的观测结果一致。该项目受益于大量的试验模型。该方法将使用这些作为正式联合反演的起始模型,以检验它们如何解释 Pn 阴影区,同时仍与远震观测保持一致,最终,该研究的结果将有助于解决这一问题。 “arclogite”在岩石圈形成中的作用,从而确定岩石圈分层或对流不稳定是否可以更好地解释山脉下方的岩石圈形成。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Roecker其他文献
Steven Roecker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Roecker', 18)}}的其他基金
Collaborative Research: Active and Passive Seismic Imaging of the Three-Dimensional Structure and Magma System beneath the Summit of Kilauea Volcano
合作研究:基拉韦厄火山顶下三维结构和岩浆系统的主动和被动地震成像
- 批准号:
2218646 - 财政年份:2023
- 资助金额:
$ 7.98万 - 项目类别:
Standard Grant
Investigation of Anomalous Travel Times in the Central Andes: Possible Evidence for a Lithospheric Root Trapped Above a Flat Slab
安第斯山脉中部异常旅行时间的调查:岩石圈根部被困在平板上方的可能证据
- 批准号:
2027496 - 财政年份:2021
- 资助金额:
$ 7.98万 - 项目类别:
Continuing Grant
Collaborative Research: TransANdean Great Orogeny (TANGO)
合作研究:跨安第斯大造山运动(TANGO)
- 批准号:
2021040 - 财政年份:2020
- 资助金额:
$ 7.98万 - 项目类别:
Standard Grant
Collaborative Research: Testing the Role of Magma and Related Fluids in Early-Stage Rifting, East Africa
合作研究:测试岩浆和相关流体在东非早期裂谷中的作用
- 批准号:
1113346 - 财政年份:2011
- 资助金额:
$ 7.98万 - 项目类别:
Continuing Grant
Collaborative Research: Seismic characterization of microearthquakes and crustal velocity structure around the Whataroa fault zone drilling site, Alpine Fault, New Zealand
合作研究:新西兰高山断层瓦塔罗阿断层带钻探现场周围微地震和地壳速度结构的地震特征
- 批准号:
1114147 - 财政年份:2011
- 资助金额:
$ 7.98万 - 项目类别:
Standard Grant
Collaborative Research: Analysis of Seismicity Associated with the Mw=8.8 2010 Maule Earthquake and Implications for Subduction Processes
合作研究:2010 年马乌莱地震 Mw=8.8 相关地震活动分析及其对俯冲过程的影响
- 批准号:
1045633 - 财政年份:2011
- 资助金额:
$ 7.98万 - 项目类别:
Standard Grant
Collaborative Research: TAIGER's Tale: Tectonics of Subduction to Collision
合作研究:TAIGER 的故事:俯冲到碰撞的构造
- 批准号:
1010580 - 财政年份:2010
- 资助金额:
$ 7.98万 - 项目类别:
Standard Grant
Development of a Teleseismic Viscoelastic Waveform Tomography Algorithm with Application to Broadband Seismograms from the Tien Shan
开发应用于天山宽带地震图的远震粘弹性波形层析成像算法
- 批准号:
0838384 - 财政年份:2009
- 资助金额:
$ 7.98万 - 项目类别:
Continuing Grant
Development of New Features for the PyLith Finite Element Code to Enable Innovative Research In Multiple Earthquake Cycle Simulations
开发 PyLith 有限元代码的新功能,以实现多地震周期模拟中的创新研究
- 批准号:
0745391 - 财政年份:2008
- 资助金额:
$ 7.98万 - 项目类别:
Continuing Grant
Collaborative Research: Imaging the Upper Mantle Beneath the Western Tibetan Plateau
合作研究:对青藏高原西部下方的上地幔进行成像
- 批准号:
0439976 - 财政年份:2005
- 资助金额:
$ 7.98万 - 项目类别:
Continuing Grant
相似国自然基金
秦岭-大别造山带中L构造岩的大地构造边界条件和岩石圈流变性能的综合研究
- 批准号:42362029
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
青藏高原驱龙-甲玛矿集区精细岩石圈电性结构与斑岩型铜多金属矿床深部成矿机制研究
- 批准号:42304087
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
大陆岩石圈流变模型的地震波品质因子和捕虏体流变性质约束研究
- 批准号:42374109
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
祁连山东西段岩石圈断面结构及地壳扩展变形方式差异性研究
- 批准号:42304105
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
四川盆地大地热流特征与岩石圈热结构研究及其地热资源效应
- 批准号:42372172
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: From subduction to suture: testing collisional stage and lithospheric strength as controls on orogenic structure in the Caucasus
合作研究:从俯冲到缝合:测试碰撞阶段和岩石圈强度作为高加索造山结构的控制
- 批准号:
2050618 - 财政年份:2021
- 资助金额:
$ 7.98万 - 项目类别:
Standard Grant
Collaborative Research: Vertical signatures of lithospheric deformation in the western US
合作研究:美国西部岩石圈变形的垂直特征
- 批准号:
2045292 - 财政年份:2021
- 资助金额:
$ 7.98万 - 项目类别:
Standard Grant
Collaborative Research: Vertical signatures of lithospheric deformation in the western US
合作研究:美国西部岩石圈变形的垂直特征
- 批准号:
2045291 - 财政年份:2021
- 资助金额:
$ 7.98万 - 项目类别:
Standard Grant
Collaborative Research: From subduction to suture: testing collisional stage and lithospheric strength as controls on orogenic structure in the Caucasus
合作研究:从俯冲到缝合:测试碰撞阶段和岩石圈强度作为高加索造山结构的控制
- 批准号:
2050623 - 财政年份:2021
- 资助金额:
$ 7.98万 - 项目类别:
Standard Grant
Collaborative Research: Structure and depth extent of lithospheric shear zones surrounding continental transform faults
合作研究:大陆转换断层周围岩石圈剪切带的结构和深度范围
- 批准号:
1927216 - 财政年份:2019
- 资助金额:
$ 7.98万 - 项目类别:
Standard Grant