CPS: Synergy: Collaborative Research: Learning control sharing strategies for assistive cyber-physical systems
CPS:协同:协作研究:辅助网络物理系统的学习控制共享策略
基本信息
- 批准号:1544797
- 负责人:
- 金额:$ 43.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-10-01 至 2017-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CPS: Synergy: Collaborative Research: Learning control sharing strategies for assistive cyber-physical systemsAssistive machines - like powered wheelchairs, myoelectric prostheses and robotic arms - promote independence and ability in those with severe motor impairments. As the state- of-the-art in these assistive Cyber-Physical Systems (CPSs) advances, more dexterous and capable machines hold the promise to revolutionize ways in which those with motor impairments can interact within society and with their loved ones, and to care for themselves with independence. However, as these machines become more capable, they often also become more complex. Which raises the question: how to control this added complexity? A new paradigm is proposed for controlling complex assistive Cyber-Physical Systems (CPSs), like robotic arms mounted on wheelchairs, via simple low-dimensional control interfaces that are accessible to persons with severe motor impairments, like 2-D joysticks or 1-D Sip-N-Puff interfaces. Traditional interfaces cover only a portion of the control space, and during teleoperation it is necessary to switch between different control modes to access the full control space. Robotics automation may be leveraged to anticipate when to switch between different control modes. This approach is a departure from the majority of control sharing approaches within assistive domains, which either partition the control space and allocate different portions to the robot and human, or augment the human's control signals to bridge the dimensionality gap. How to best share control within assistive domains remains an open question, and an appealing characteristic of this approach is that the user is kept maximally in control since their signals are not altered or augmented. The public health impact is significant, by increasing the independence of those with severe motor impairments and/or paralysis. Multiple efforts will facilitate large-scale deployment of our results, including a collaboration with Kinova, a manufacturer of assistive robotic arms, and a partnership with Rehabilitation Institute of Chicago. The proposal introduces a formalism for assistive mode-switching that is grounded in hybrid dynamical systems theory, and aims to ease the burden of teleoperating high-dimensional assistive robots. By modeling this CPS as a hybrid dynamical system, assistance can be modeled as optimization over a desired cost function. The system's uncertainty over the user's goals can be modeled via a Partially Observable Markov Decision Processes. This model provides the natural scaffolding for learning user preferences. Through user studies, this project aims to address the following research questions: (Q1) Expense: How expensive is mode-switching? (Q2) Customization Need: Do we need to learn mode-switching from specific users? (Q3) Learning Assistance: How can we learn mode-switching paradigms from a user? (Q4) Goal Uncertainty: How should the assistance act under goal uncertainty? How will users respond? The proposal leverages the teams shared expertise in manipulation, algorithm development, and deploying real-world robotic systems. The proposal also leverages the teams complementary strengths on deploying advanced manipulation platforms, robotic motion planning and manipulation, and human-robot comanipulation, and on robot learning from human demonstration, control policy adaptation, and human rehabilitation. The proposed work targets the easier operation of robotic arms by severely paralyzed users. The need to control many degrees of freedom (DoF) gives rise to mode-switching during teleoperation. The switching itself can be cumbersome even with 2- and 3-axis joysticks, and becomes prohibitively so with more limited (1-D) interfaces. Easing the operation of switching not only lowers this burden on those already able to operate robotic arms, but may open use to populations to whom assistive robotic arms are currently inaccessible. This work is clearly synergistic: at the intersection of robotic manipulation, human rehabilitation, control theory, machine learning, human-robot interaction and clinical studies. The project addresses the science of CPS by developing new models of the interaction dynamics between the system and the user, the technology of CPS by developing new interfaces and interaction modalities with strong theoretical foundations, and the engineering of CPS by deploying our algorithms on real robot hardware and extensive studies with able-bodied and users with sprinal cord injuries.
CPS:协同:协作研究:辅助网络物理系统的学习控制共享策略辅助机器(如动力轮椅、肌电假肢和机械臂)可促进患有严重运动障碍的人的独立性和能力。随着这些辅助网络物理系统 (CPS) 技术的进步,更加灵巧和强大的机器有望彻底改变运动障碍患者在社会中以及与亲人互动的方式,并独立照顾自己。然而,随着这些机器的功能变得越来越强大,它们通常也变得更加复杂。这就提出了一个问题:如何控制这种增加的复杂性?提出了一种新的范式,用于通过简单的低维控制界面(例如二维操纵杆或一维)来控制复杂的辅助网络物理系统(CPS),例如安装在轮椅上的机械臂,这些控制界面可供患有严重运动障碍的人使用Sip-N-Puff 接口。传统的界面仅覆盖部分控制空间,在远程操作过程中需要在不同的控制模式之间切换才能访问完整的控制空间。可以利用机器人自动化来预测何时在不同控制模式之间切换。这种方法与辅助域内的大多数控制共享方法不同,这些方法要么划分控制空间并将不同的部分分配给机器人和人类,要么增强人类的控制信号以弥合维度差距。如何在辅助域内最好地共享控制仍然是一个悬而未决的问题,这种方法的一个吸引人的特点是用户可以最大限度地保持控制,因为他们的信号没有改变或增强。通过提高患有严重运动障碍和/或瘫痪的人的独立性,对公共健康产生重大影响。多项努力将促进我们成果的大规模部署,包括与辅助机械臂制造商 Kinova 的合作,以及与芝加哥康复研究所的合作。该提案引入了一种基于混合动力系统理论的辅助模式切换形式,旨在减轻远程操作高维辅助机器人的负担。通过将此 CPS 建模为混合动力系统,可以将辅助建模为对所需成本函数的优化。系统对用户目标的不确定性可以通过部分可观察马尔可夫决策过程进行建模。该模型为学习用户偏好提供了自然的框架。通过用户研究,该项目旨在解决以下研究问题:(Q1)费用:模式切换有多贵? (Q2)定制需求:我们需要向特定用户学习模式切换吗? (Q3)学习协助:我们如何从用户那里学习模式切换范式? (Q4)目标不确定性:目标不确定性下援助应该如何行动?用户会如何反应?该提案利用了团队在操作、算法开发和部署现实世界机器人系统方面共享的专业知识。该提案还利用了团队在部署先进操纵平台、机器人运动规划和操纵、人机协同操作、以及机器人从人类演示中学习、控制策略适应和人类康复方面的互补优势。拟议的工作目标是让严重瘫痪的用户更轻松地操作机械臂。控制多个自由度 (DoF) 的需要导致了远程操作期间的模式切换。即使使用 2 轴和 3 轴操纵杆,切换本身也可能很麻烦,并且对于更有限的(一维)接口来说,切换本身会变得非常麻烦。简化切换操作不仅可以减轻那些已经能够操作机器人手臂的人的负担,而且还可以向目前无法使用辅助机器人手臂的人群开放。这项工作显然具有协同作用:处于机器人操作、人类康复、控制理论、机器学习、人机交互和临床研究的交叉点。该项目通过开发系统与用户之间交互动力学的新模型来解决 CPS 科学问题,通过开发具有坚实理论基础的新接口和交互方式来解决 CPS 技术问题,以及通过在真实机器人上部署我们的算法来解决 CPS 工程问题硬件以及对身体健全的人和脊髓损伤的用户进行的广泛研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siddhartha Srinivasa其他文献
Siddhartha Srinivasa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siddhartha Srinivasa', 18)}}的其他基金
Travel: NSF Student Travel Grant for 2024 Human-Robot Interaction Pioneers Workshop (HRI)
旅行:2024 年人机交互先锋研讨会 (HRI) 的 NSF 学生旅行补助金
- 批准号:
2414275 - 财政年份:2024
- 资助金额:
$ 43.59万 - 项目类别:
Standard Grant
NRI/Collaborative Research: Robot-Assisted Feeding: Towards Efficient, Safe, and Personalized Caregiving Robots
NRI/合作研究:机器人辅助喂养:迈向高效、安全和个性化的护理机器人
- 批准号:
2132848 - 财政年份:2022
- 资助金额:
$ 43.59万 - 项目类别:
Standard Grant
CHS: Small: Towards Usability in Robotic Assistance: A Formalism for Robot-Assisted Feeding while Adjusting to User Preferences
CHS:小:迈向机器人辅助的可用性:机器人辅助喂养的形式主义,同时根据用户偏好进行调整
- 批准号:
2007011 - 财政年份:2020
- 资助金额:
$ 43.59万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Learning control sharing strategies for assistive cyber-physical systems
CPS:协同:协作研究:辅助网络物理系统的学习控制共享策略
- 批准号:
1745561 - 财政年份:2017
- 资助金额:
$ 43.59万 - 项目类别:
Standard Grant
NRI: Collaborative Research: Learning Deep Sensorimotor Policies for Shared Autonomy
NRI:协作研究:学习共享自主权的深度感觉运动策略
- 批准号:
1748582 - 财政年份:2017
- 资助金额:
$ 43.59万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Learning control sharing strategies for assistive cyber-physical systems
CPS:协同:协作研究:辅助网络物理系统的学习控制共享策略
- 批准号:
1745561 - 财政年份:2017
- 资助金额:
$ 43.59万 - 项目类别:
Standard Grant
NRI: Collaborative Research: Learning Deep Sensorimotor Policies for Shared Autonomy
NRI:协作研究:学习共享自主权的深度感觉运动策略
- 批准号:
1637748 - 财政年份:2016
- 资助金额:
$ 43.59万 - 项目类别:
Standard Grant
NRI-Small: Collaborative Research: Addressing Clutter and Uncertainty for Robotic Manipulation in Human Environments
NRI-Small:协作研究:解决人类环境中机器人操作的混乱和不确定性
- 批准号:
1208388 - 财政年份:2012
- 资助金额:
$ 43.59万 - 项目类别:
Standard Grant
相似国自然基金
阳-非离子药剂协同强化铁矿石反浮选过程的界面作用调控机制
- 批准号:52374261
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
“三废”基固化剂与改性纤维协同固化疏浚土作用机理与工程效应
- 批准号:42377141
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于APOE介导蓝斑去甲肾上腺素神经元损伤与Aβ-Tau蛋白交互协同作用诱导阿尔茨海默病神经退变机制的研究
- 批准号:82371999
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
硝态氮和钾离子协同促进沼液水培生菜根系发育和铵同化的作用机制
- 批准号:32302809
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
染色质多位点相互作用与多个基因转录协同的调控机制研究
- 批准号:32370691
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CPS:Medium:Collaborative Research: High-Fidelity High-Resolution and Secure Monitoring and Control of Future Grids: a synergy of AI, data science, and hardware security
CPS:中:协作研究:未来电网的高保真高分辨率和安全监控:人工智能、数据科学和硬件安全的协同作用
- 批准号:
1932196 - 财政年份:2019
- 资助金额:
$ 43.59万 - 项目类别:
Standard Grant
CPS:Medium:Collaborative Research:High-Fidelity High-Resolution and Secure Monitoring and Control of Future Grids: a synergy of AI, data science, and hardware security
CPS:中:协作研究:未来电网的高保真高分辨率和安全监控:人工智能、数据科学和硬件安全的协同作用
- 批准号:
1932501 - 财政年份:2019
- 资助金额:
$ 43.59万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Towards Effective and Efficient Sensing-Motion Co-Design of Swarming Cyber-Physical Systems
CPS:协同:协作研究:实现集群网络物理系统的有效和高效的传感-运动协同设计
- 批准号:
1936599 - 财政年份:2019
- 资助金额:
$ 43.59万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Synergy: Augmented reality for control of reservation-based intersections with mixed autonomous-non autonomous flows
CPS:中:协作研究:协同作用:用于控制具有混合自主-非自主流的基于预留的交叉口的增强现实
- 批准号:
1739964 - 财政年份:2018
- 资助金额:
$ 43.59万 - 项目类别:
Continuing Grant
CPS: Synergy: Collaborative Research: Control of Vehicular Traffic Flow via Low Density Autonomous Vehicles
CPS:协同:协作研究:通过低密度自动驾驶车辆控制车流
- 批准号:
1854321 - 财政年份:2018
- 资助金额:
$ 43.59万 - 项目类别:
Standard Grant