CAREER: Crowdsourcing for Multirobot Coordination
职业:多机器人协调的众包
基本信息
- 批准号:1553726
- 负责人:
- 金额:$ 52.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-02-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Teams of humans are exceptionally good at coordination. Teams of robots, however, are extremely clumsy at coordination, requiring extensive communication and computation. Reliance on this infrastructure poses a significant roadblock to bringing robot teams into real-world applications. This project is pursuing an integrated research, education, and outreach approach for developing novel, data-driven algorithms for multi-robot coordination, inspired by human coordination. As cognitive beings that make decisions based on broad context, memory, and sensing, human capabilities are challenging to transfer to robotics. To facilitate this transfer, the project is developing an online crowdsourcing application that tasks participants with creating a global structure, such as a shape. The application constrains participants to robot-like capabilities by limiting available information and actions. The application will provide a faithful representation of the capabilities of distributed teams of robots, and will be used to gain insights into human coordination that can then be transferred to a multi-robot system.The overarching goal of the proposed work is to develop novel methodologies for multi robot coordination firmly grounded in human collaboration, based on models learned from data collected via a crowdsourced online application. To this end, the research objectives are (1) to explicate the relationship between context (communication and sensing) and outcomes in distributed teams of humans working on tightly coupled tasks using data generated from an online multi-person interface; (2) to identify, using statistical methods, parameters for distributed teams of robots solving similar shared objective problems; (3) to infer, using deep learning architectures, diverse ensembles of coordination models for distributed teams of robots solving tightly coupled problems using the data collected from the crowdsourcing application; and (4) to validate these models by evaluating their success in solving tightly coupled problems using a combination of simulation, hardware, and mixed reality experiments.
人类团队擅长协调。但是,机器人团队在协调方面非常笨拙,需要广泛的沟通和计算。依赖这种基础设施为将机器人团队带入现实世界应用程序带来了重大的障碍。该项目正在追求一种综合研究,教育和外展方法,以开发出受其协调启发的新型,数据驱动的多机器人协调算法。作为基于广泛背景,记忆和感知决定的决策的认知生物,人类的能力在转移到机器人技术方面具有挑战性。为了促进这种转移,该项目正在开发一个在线众包应用程序,该应用程序任务参与者创建一个全球结构,例如形状。该应用程序通过限制可用信息和动作来限制参与者的类似机器人的功能。 The application will provide a faithful representation of the capabilities of distributed teams of robots, and will be used to gain insights into human coordination that can then be transferred to a multi-robot system.The overarching goal of the proposed work is to develop novel methodologies for multi robot coordination firmly grounded in human collaboration, based on models learned from data collected via a crowdsourced online application.为此,研究目标是(1)使用从在线多人界面生成的数据来阐明上下文(交流和传感)之间的关系以及分布式人类的成果,从事紧密耦合任务的关系; (2)使用统计方法来识别机器人分布式团队的参数,以解决相似的共享目标问题; (3)为了使用深度学习体系结构推断,使用从众包应用程序中收集的数据来解决分布式机器人的分布式机器人团队的各种协调模型; (4)通过使用仿真,硬件和混合现实实验的组合来评估它们在解决紧密耦合问题方面的成功来验证这些模型。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DART: Diversity-enhanced Autonomy in Robot Teams
- DOI:10.1177/0278364919839137
- 发表时间:2019-03
- 期刊:
- 影响因子:0
- 作者:Nora Ayanian
- 通讯作者:Nora Ayanian
MAPFAST: A Deep Algorithm Selector for Multi Agent Path Finding using Shortest Path Embeddings
MAPFAST:使用最短路径嵌入进行多智能体路径查找的深度算法选择器
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Ren, Jingyao;Sathiyanarayanan, Vikraman;Ewing, Eric;Senbaslar, Baskin;Ayanian, Nora
- 通讯作者:Ayanian, Nora
Crowdsourced coordination through online games
通过网络游戏进行众包协调
- DOI:10.1109/hri.2016.7451839
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Tavakoli, Arash;Nalbandian, Haig;Ayanian, Nora
- 通讯作者:Ayanian, Nora
Betweenness Centrality in Multi-Agent Path Finding
多智能体路径查找中的介数中心性
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Eric Ewing;Jingyao Ren;Dhvani Kansara;Vikraman Sathiyanarayanan;Nora Ayanian
- 通讯作者:Nora Ayanian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nora Ayanian其他文献
STOCHASTIC CONTROL FOR SELF-ASSEMBLY OF XBOTS
XBOTS 自组装的随机控制
- DOI:
10.1115/detc2008-49535 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Nora Ayanian;Paul J. White;Mark H. Yim;Vijay R. Kumar - 通讯作者:
Vijay R. Kumar
Automatic Optimal Multi-Agent Path Finding Algorithm Selector (Student Abstract)
自动最优多智能体路径寻找算法选择器(学生摘要)
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
J. Ren;V. Sathiyanarayanan;Eric Ewing;Baskin Senbaslar;Nora Ayanian - 通讯作者:
Nora Ayanian
STA-RLHF: Stackelberg Aligned Reinforcement Learning with Human Feedback
STA-RLHF:Stackelberg 将强化学习与人类反馈结合起来
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Jacob Makar;Arjun Prakash;†. DenizalpGoktas;Nora Ayanian;†. AmyGreenwald - 通讯作者:
†. AmyGreenwald
Multiplayer Games for Learning Multirobot Coordination Algorithms
用于学习多机器人协调算法的多人游戏
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Arash Tavakoli;Haig Nalbandian;Nora Ayanian - 通讯作者:
Nora Ayanian
Trajectory Planning for Heterogeneous Robot Teams
异构机器人团队的轨迹规划
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Mark J. Debord;W. Hönig;Nora Ayanian - 通讯作者:
Nora Ayanian
Nora Ayanian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nora Ayanian', 18)}}的其他基金
CAREER: Crowdsourcing for Multirobot Coordination
职业:多机器人协调的众包
- 批准号:
2317145 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
Expediting Solutions to Hard Multi-Robot Path Finding Instances
加速硬多机器人路径查找实例的解决方案
- 批准号:
2330942 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
- 批准号:
2311967 - 财政年份:2022
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
- 批准号:
1724399 - 财政年份:2017
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
REU Site: Robotics and Autonomous Systems
REU 网站:机器人和自主系统
- 批准号:
1659838 - 财政年份:2017
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
相似国自然基金
“众包+自营”即时物流配送的数据驱动型鲁棒优化方法
- 批准号:72371204
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
权衡双边利益的知识密集型众包任务推荐研究:基于多任务深度学习
- 批准号:72301136
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
众包GNSS增强的电离层三维建模方法
- 批准号:42371434
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
多维度社会互动视角下基于VR众包实验的人群疏散行为研究
- 批准号:72374120
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
考虑平台社会责任的众包物流配送动态优化方案研究
- 批准号:72371039
- 批准年份:2023
- 资助金额:39 万元
- 项目类别:面上项目
相似海外基金
Situation-aware Multi-sided Personalised Analytics in Spatial Crowdsourcing
空间众包中的态势感知多边个性化分析
- 批准号:
DP240100356 - 财政年份:2024
- 资助金额:
$ 52.5万 - 项目类别:
Discovery Projects
InclusivAI - fostering equitable AI systems through engaged, educated crowdsourcing
InclusivAI - 通过参与、受过教育的众包培育公平的人工智能系统
- 批准号:
10076297 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Grant for R&D
Crowdsourcing for adolescent health: development and evaluation of a tool to collect data on the state and determinants of adolescent physical health
青少年健康众包:开发和评估收集青少年身体健康状况和决定因素数据的工具
- 批准号:
MR/X029050/1 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Research Grant
CAREER: Crowdsourcing for Multirobot Coordination
职业:多机器人协调的众包
- 批准号:
2317145 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
Innovative Rapid Enabling, Affordable, point-of-Care HPV Self-Testing Strategy (I-REACH)
创新的快速、经济、即时护理 HPV 自检策略 (I-REACH)
- 批准号:
10648634 - 财政年份:2023
- 资助金额:
$ 52.5万 - 项目类别: