Collaborative Research: EAGER: Energy Harvesting via Thermo-Piezoelectric Transduction

合作研究:EAGER:通过热压电转换进行能量收集

基本信息

  • 批准号:
    1549973
  • 负责人:
  • 金额:
    $ 13.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2016-11-30
  • 项目状态:
    已结题

项目摘要

This collaborative, EArly-concept Grants for Exploratory Research (EAGER), research project focuses on a design concept that may allow energy harvesting from waste heat, by converting the heat to electrical energy. The vision of the research is to use heat pipes, in particular so-called oscillating heat pipes (OHP). Inside an OHP, a series of serpentine-arranged mini-channels exist that are partially filled with a working fluid. There has been limited, if any, research in the area of energy-harvesting through the use of heat pipes. Heat pipes provide salient mechanical work within their structure due to vapor expansion and fluid flow. This research aims to harvest this internal work by augmenting the OHP heat transfer to the environment through utilization of a specially designed energy harvesting system that enables generation of electrical work through a piezoelectric effect, namely thermally-actuated piezoelectric transduction (TPT). This research project will contribute to better understanding of the physics and application of TPT, improved understanding of piezoelectric-materials, energy-harvesting using OHPs. This research will bridge research perspectives and approaches from the thermal/fluid sciences and power generation. Potential applications for these devices are numerous, especially for waste heat recovery and/or renewable power generation. The technology and basic science derived can result in: off-grid power generation for communications devices (e.g., third world country cellular phone charging and defense applications), more energy-efficient electronics packaging schemes, and new opportunities for high heat flux thermal energy harvesting. Geothermal temperature gradients may also be exploited for constant, renewable power generation via the implementation of ultra-large OHP/TPT systems or OHP/TPTs aligned in-series. This collaborative project will support both graduate and undergraduate researchers that have been traditionally underrepresented.The OHP has yet to be investigated as a means to destabilize natural temperature gradients for the purpose of establishing a Stirling cycle, nor has it been investigated as a means for power generation. A unique opportunity for using TPT is atop a flat-plate oscillating heat pipe (OHP) - a device that effectively transfers heat via cyclic phase change of an internal working fluid - giving rise to an oscillatory temperature field on its surface. The research will investigate the use of both TPT and OHPs for combined 1) power generation/energy harvesting, and 2) highly-efficient heat transfer. To accomplish this, a unique energy harvester, which is directly attached to the OHP surface, will be designed and will consist of a micro-sized heat sink, encapsulated gas and suspended, spring-resisted piezoelectric material. An aggressive schedule of well-designed experiments is planned to determine how the effectiveness of TPT depends on OHP and energy harvester design. A highly-coupled set of governing equations will be defined and solved by joining common OHP thermo/fluidic models with the constitutive equations of piezoelectric materials. Numerical multi-physics software will be utilized to simulate the convective air flow in the energy harvester and electricity generation inherent to the proposed method for OHP-integrated TPT. The mechanical response and fatigue of various piezoelectric materials for TPT will be evaluated. Thermoelectricity generation via the proposed OHP/TPT is a unique and potentially transformative approach to enthalpy-to-electricity conversion as the OHP/TPT can efficiently transfer heat from one location to another (with ultra-high thermal conductivity) while also generating power.
这项合作的,早期的概念赠款用于探索性研究(急切),研究项目的重点是设计概念,该概念可以通过将热量转化为电能,从而可以从废热中收集能量。研究的视野是使用热管,特别是所谓的振荡热管(OHP)。在OHP内部,存在一系列蛇纹石的迷你通道,部分充满了工作流体。通过使用热管,在能量收获领域的研究有限(如果有的话)。由于蒸气膨胀和流体流动,热管在其结构内提供了显着的机械工作。这项研究旨在通过利用特殊设计的能量收集系统来增加OHP传热到环境,从而收获这项内部工作,该系统可以通过压电效应(即热实现的压电传输(TPT))来产生电气工作。该研究项目将有助于更好地理解TPT的物理和应用,改善对压电材料的理解,使用OHP的能量收获。这项研究将弥合热/流体科学和发电的研究观点和方法。这些设备的潜在应用很多,尤其是用于废热恢复和/或可再生发电。该技术和基础科学衍生的可能会导致:通信设备的离网发电(例如,第三世界国家蜂窝电话充电和防御应用),更节能的电子包装方案以及高热量热能收获的新机会。通过实施超大的OHP/TPT系统或OHP/TPTS对齐的串行,也可以利用地热温度梯度来利用恒定的可再生发电。该协作项目将支持传统上代表性不足的研究生和本科研究人员。OHP尚未被调查,以使自然温度梯度稳定稳定,目的是建立斯特林周期,也没有将其作为发电的手段进行调查。使用TPT的独特机会是在平板振荡的热管上(OHP) - 一种通过内部工作流体的循环相变有效传输热量的设备 - 产生其表面上的振荡温度场。该研究将调查TPT和OHP共同使用TPT和OHP的使用1)发电/能量收集,以及2)高效的传热。为此,将设计并直接连接到OHP表面的独特能量收割机,并将由微型散热器,封装的气体和悬挂式弹簧抗性的压电材料组成。计划进行精心设计的实验时间表,以确定TPT的有效性如何取决于OHP和能量收割机设计。通过将通用的OHP热/流体模型与压电材料的本构方程相连,可以定义和求解一组高度耦合的管理方程。数值多物理软件将用于模拟能量收割机中的对流空气流以及OHP集成TPT的拟议方法固有的发电。将评估各种压电材料的机械响应和疲劳。通过提出的OHP/TPT生成热电学是一种独特的且潜在的转化方法,可以通过OHP/TPT有效地将热量从一个位置转移到另一个位置(具有超高的热导率),同时也会产生功率。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A modified energy-based approach for fatigue life prediction of superelastic NiTi in presence of tensile mean strain and stress
Analysis and comparison of internal and external temperature measurements of a tubular oscillating heat pipe
管式振荡热管内外温度测量分析与比较
  • DOI:
    10.1016/j.expthermflusci.2017.01.020
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Monroe, J. Gabriel;Aspin, Zachary S.;Fairley, John D.;Thompson, Scott M.
  • 通讯作者:
    Thompson, Scott M.
Energy harvesting via fluidic agitation of a magnet within an oscillating heat pipe
通过振荡热管内磁体的流体搅拌来收集能量
  • DOI:
    10.1016/j.applthermaleng.2017.10.076
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Monroe, J. Gabriel;Ibrahim, Omar T.;Thompson, Scott M.;Shamsaei, Nima
  • 通讯作者:
    Shamsaei, Nima
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Scott Thompson其他文献

Police UAV use: institutional realities and public perceptions
警用无人机的使用:制度现实和公众看法
Neuron Subtype Specific Molecular Mechanisms in Fentanyl Abstinence
  • DOI:
    10.1016/j.biopsych.2022.02.052
  • 发表时间:
    2022-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Megan Fox;Andreas Wulff;Daniela Franco;Eric Choi;Michel Engeln;Cali Calarco;Makeda Turner;Ramesh Chandra;Scott Thompson;Seth A. Ament;Mary Kay Lobo
  • 通讯作者:
    Mary Kay Lobo
Concept to Reality: An Integrated Approach to Testing Software User Interfaces
从概念到现实:测试软件用户界面的集成方法
  • DOI:
    10.3390/app132111997
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Md. Whaiduzzaman;Adnan Sakib;N. Khan;S. Chaki;Labiba Shahrier;Sudipto Ghosh;Md. Saifur Rahman;M. J. N. Mahi;Alistair Barros;Colin J. Fidge;Scott Thompson;Tony Jan
  • 通讯作者:
    Tony Jan
OF THE EXPERIMENTAL ANALYSIS OF BEHAVIOR STIMULUS EQUIVALENCE AND RULE FOLLOWING
行为刺激等价性和规则遵循的实验分析
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Hayes;Scott Thompson;S. Hayes
  • 通讯作者:
    S. Hayes
Exploiting Rules to Enhance Machine Learning in Extracting Information From Multi-Institutional Prostate Pathology Reports.
利用规则增强机器学习从多机构前列腺病理报告中提取信息。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Enrico Santus;Tal Schuster;A. Tahmasebi;Clara Li;Adam Yala;Conor R. Lanahan;P. Prinsen;Scott Thompson;Samuel W. Coons;L. Mynderse;R. Barzilay;Kevin S Hughes
  • 通讯作者:
    Kevin S Hughes

Scott Thompson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Scott Thompson', 18)}}的其他基金

FMSG: Eco: Off-Grid Construction via Sustainable Compression Curing of Vegetable Oil-Impregnated Sediments
FMSG:生态:通过植物油浸渍沉积物的可持续压缩固化进行离网建设
  • 批准号:
    2423166
  • 财政年份:
    2023
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
FMSG: Eco: Off-Grid Construction via Sustainable Compression Curing of Vegetable Oil-Impregnated Sediments
FMSG:生态:通过植物油浸渍沉积物的可持续压缩固化进行离网建设
  • 批准号:
    2229267
  • 财政年份:
    2022
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Energy Harvesting via Thermo-Piezoelectric Transduction
合作研究:EAGER:通过热压电转换进行能量收集
  • 批准号:
    1660446
  • 财政年份:
    2016
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
SBIR Phase II: A High Frequency Beam Steered Electromagnetic Impulse Radar to Locate Human Targets Through Opaque Media
SBIR 第二阶段:高频波束控制电磁脉冲雷达通过不透明介质定位人体目标
  • 批准号:
    0216574
  • 财政年份:
    2002
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
SBIR Phase I: A High Frequency Beam Steered Electromagnetic Impulse Radar to Locate Human Targets Through Opaque Media
SBIR 第一阶段:高频波束控制电磁脉冲雷达通过不透明介质定位人体目标
  • 批准号:
    0109828
  • 财政年份:
    2001
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
SBIR Phase I: Using Hidden Markov Models to Track Human Targets
SBIR 第一阶段:使用隐马尔可夫模型跟踪人类目标
  • 批准号:
    9760988
  • 财政年份:
    1998
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
SBIR Phase I: Enhanced Airborne Beam-Steering for Ground Probing Radar
SBIR 第一阶段:地面探测雷达的增强型机载波束控制
  • 批准号:
    9660920
  • 财政年份:
    1997
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
SBIR PHASE II: Electronic Beam Steering for Ground Probing Radar
SBIR 第二阶段:地面探测雷达电子波束控制
  • 批准号:
    9708205
  • 财政年份:
    1997
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
SBIR PHASE I: Electronic Beam Steering for Ground Probing Radar
SBIR 第一阶段:地面探测雷达电子波束控制
  • 批准号:
    9561190
  • 财政年份:
    1996
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
NATO Postdoctoral Fellow
北约博士后研究员
  • 批准号:
    8651732
  • 财政年份:
    1986
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 13.49万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了