Large-Scale Fork-Join Networks with Synchronization Constraints
具有同步约束的大规模分叉连接网络
基本信息
- 批准号:1538149
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fork-join networks with synchronization constraints can be widely used to model patient flows in hospitals (e.g., emergency department treatment and patient discharge process) and data centers (e.g., parallelized Web search), among many other applications. In such networks, jobs are forked into parallel tasks to be served at service stations with parallel servers, and tasks are then joined for job completion or further processing provided that certain synchronization constraints are satisfied, for example, only completed tasks from the same job can be joined (non-exchangeable). However, very little is known about the performance, reliability and control of these networks, and existing methods in stochastic networks cannot be applied to study them. This award supports development of new methodology to better understand important performance measures (e.g., congestions and response times) of fork-join networks with non-exchangeable synchronization constraints, to design reliable fork-join networks with synchronization constraints operating in dynamic random environments, and to manage them in a cost-effective way. The research findings will have a broad impact on the society by improving the efficiency and quality of services in healthcare and data centers. The research will result in young STEM-trained graduates and underrepresented groups with new mathematical tools that help understand and improve the delivered services. The main mathematical challenge to study fork-join networks of multi-server service stations with non-exchangeable synchronization lies in the resequencing of arrival orders after service completion at each station due to randomness of service times. Unlike classical queueing networks, delay for synchronization is a key performance measure affecting system congestion, while resequencing is its determining factor. No analytical methods and results are known for such networks. This research will develop a new framework to solve the resequencing problem in fork-join networks, and thus, result in effective approximations for the synchronization dynamics as well as the service dynamics. The approach will use multi-parameter stochastic processes to study the service, queueing and synchronization dynamics, including sequential empirical processes driven by random vectors and their limits, and two-parameter processes tracking elapsed and residual service and wait times. Coordination and information sharing among parallel tasks of each job during their services will be exploited to develop optimal control policies for fork-join networks with synchronization constraints in order to minimize delay for synchronization as well as delay for service. Preventive strategies will be provided on the design and management of reliable fork-join networks with synchronization constraints operating in dynamic random environments.
具有同步约束的分叉连接网络可广泛用于对医院(例如急诊室治疗和患者出院流程)和数据中心(例如并行网络搜索)中的患者流进行建模以及许多其他应用。 在这样的网络中,作业被分叉成并行任务,由具有并行服务器的服务站提供服务,然后将任务合并以完成作业或进一步处理,前提是满足某些同步约束,例如,只有来自同一作业的已完成的任务可以加入(不可交换)。 然而,人们对这些网络的性能、可靠性和控制知之甚少,并且随机网络中的现有方法无法应用于研究它们。该奖项支持开发新方法,以更好地理解具有不可交换同步约束的分叉连接网络的重要性能指标(例如拥塞和响应时间),设计在动态随机环境中运行的具有同步约束的可靠分叉连接网络,以及以具有成本效益的方式管理它们。研究结果将通过提高医疗保健和数据中心的服务效率和质量对社会产生广泛影响。该研究将为年轻的 STEM 培训毕业生和代表性不足的群体带来新的数学工具,帮助理解和改进所提供的服务。研究具有不可交换同步的多服务器服务站的分叉连接网络的主要数学挑战在于,由于服务时间的随机性,每个服务站服务完成后到达订单的重新排序。与经典排队网络不同,同步延迟是影响系统拥塞的关键性能指标,而重排序是其决定因素。此类网络尚无已知的分析方法和结果。这项研究将开发一个新的框架来解决分叉连接网络中的重新排序问题,从而对同步动态和服务动态产生有效的近似。该方法将使用多参数随机过程来研究服务、排队和同步动态,包括由随机向量及其限制驱动的顺序经验过程,以及跟踪已用和剩余服务和等待时间的双参数过程。将利用每个作业在其服务期间的并行任务之间的协调和信息共享来开发具有同步约束的分叉连接网络的最优控制策略,以最小化同步延迟和服务延迟。将针对在动态随机环境中运行的具有同步约束的可靠分叉连接网络的设计和管理提供预防策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guodong Pang其他文献
CT virtual endoscopy for analyzing variations in the hepatic portal vein
用于分析肝门静脉变化的 CT 虚拟内窥镜
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:1.4
- 作者:
Guodong Pang;Guangrui Shao;Fang Zhao;Cheng Liu;Hai Zhong;W. Guo - 通讯作者:
W. Guo
On the splitting and aggregating of Hawkes processes
关于霍克斯过程的分裂和聚合
- DOI:
10.1017/jpr.2022.76 - 发表时间:
2023 - 期刊:
- 影响因子:1
- 作者:
Bo Li;Guodong Pang - 通讯作者:
Guodong Pang
Impact of novel deep learning image reconstruction algorithm on diagnosis of contrast-enhanced liver computed tomography imaging: Comparing to adaptive statistical iterative reconstruction algorithm
新型深度学习图像重建算法对增强肝脏计算机断层扫描成像诊断的影响:与自适应统计迭代重建算法的比较
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:3
- 作者:
Shuo Yang;Yifan Bie;Guodong Pang;Xingchao Li;Kun Zhao;Changlei Zhang;Hai Zhong - 通讯作者:
Hai Zhong
Meta-analysis of the association of HLA-DRB1 with rheumatoid arthritis in Chinese populations
中国人群HLA-DRB1与类风湿关节炎相关性的Meta分析
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:2.3
- 作者:
Meng Yang;Xiaocong Kuang;Jianmin Li;Yanbin Pan;M. Tan;Binzhu Lu;Q. Cheng;Lingyan Wu;Guodong Pang - 通讯作者:
Guodong Pang
Stochastic dynamics of two-compartment models with regulatory mechanisms for hematopoiesis
具有造血调节机制的二室模型的随机动力学
- DOI:
10.1007/978-3-030-88919-7_16 - 发表时间:
2024-04-29 - 期刊:
- 影响因子:0
- 作者:
Ren;Marek Kimmel;Guodong Pang - 通讯作者:
Guodong Pang
Guodong Pang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guodong Pang', 18)}}的其他基金
Collaborative Research: Infinite horizon risk-sensitive control of diffusions with applications in stochastic networks
合作研究:无限视野风险敏感扩散控制及其在随机网络中的应用
- 批准号:
2216765 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Infinite horizon risk-sensitive control of diffusions with applications in stochastic networks
合作研究:无限视野风险敏感扩散控制及其在随机网络中的应用
- 批准号:
2108683 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Ergodic Control of Stochastic Differential Equations Driven By a Class of Pure-Jump Levy Processes, and Applications to Stochastic Networks
合作研究:一类纯跳跃 Levy 过程驱动的随机微分方程的遍历控制及其在随机网络中的应用
- 批准号:
1715875 - 财政年份:2017
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: Physiologically Based Optimization of ICU Management
合作研究:基于生理的ICU管理优化
- 批准号:
1635410 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
超大规模MIMO系统信道状态信息获取与无线传输理论研究
- 批准号:62371180
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
考虑运营扰动的大规模地铁网络个体乘客实时出行过程预测
- 批准号:52372332
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度理解的大规模互联网虚假新闻检测研究
- 批准号:62302333
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型电力系统中可再生能源大规模利用的建模及激励机制研究
- 批准号:72304114
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模黎曼流形稀疏优化算法及应用
- 批准号:12371306
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Identification of small molecule inhibitors to exonuclease 1 for breast cancer treatment
鉴定用于乳腺癌治疗的核酸外切酶 1 小分子抑制剂
- 批准号:
10735307 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Novel approaches to map DNA replication traffic in a genome-wide scale
在全基因组范围内绘制 DNA 复制流量图的新方法
- 批准号:
9923689 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Large-scale imaging and analysis of circadian calcium rhythm
昼夜钙节律的大规模成像和分析
- 批准号:
23790268 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Research of Gyuen kiok and Kon kiok
权角和昆角的研究
- 批准号:
18520284 - 财政年份:2006
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probabilistic Research of Large Scale Interacting Systems
大规模交互系统的概率研究
- 批准号:
14340029 - 财政年份:2002
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)