ERASynBio: MiniCell - A Model-driven Approach to Minimal Cell Engineering
ERASynBio:MiniCell - 模型驱动的最小细胞工程方法
基本信息
- 批准号:1548123
- 负责人:
- 金额:$ 74.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-15 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project engages research teams in the US, Spain, Germany and France to develop tools for the design of microorganisms to perform valuable functions including cost-effective synthesis of important chemicals or capabilities for the decontamination of toxic waste. The investigators will develop a predictive mathematical model of a bacterial cell that will guide the design and genetic manipulation that will allow the development of a minimal organism that is optimized to perform specific functions or behaviors. This project will provide interdisciplinary research training for postdoctoral scholars, support a summer course that will provide twenty-five graduate students training in computational systems biology, and includes activities that will disseminate the most advanced computational and experimental bioengineering methods.This project addresses key challenges for synthetic biology, such as the limited capabilities to design, synthesize, and fully understand whole genomes. Bacteria with minimal uncharacterized components, such as Mycoplasma pneumonia, are ideal for this purpose. Data derived from detailed experimental characterization of the organism will be used to create predictive models that will guide the design and development of a streamlined version of the progenitor strain. This collaborative project combines expertise in genomic profiling, whole-cell modeling, and genome engineering to rationally construct an optimized cellular chassis to specification. This project is the US collaborative component of a project funded through the ERASynBIO EU-US transnational funding mechanism.
该项目吸引了美国、西班牙、德国和法国的研究团队开发用于微生物设计的工具,以执行有价值的功能,包括具有成本效益的合成重要化学品或净化有毒废物的能力。 研究人员将开发细菌细胞的预测数学模型,该模型将指导设计和基因操作,从而开发出经过优化以执行特定功能或行为的最小生物体。该项目将为博士后学者提供跨学科研究培训,支持为 25 名研究生提供计算系统生物学培训的暑期课程,并包括传播最先进的计算和实验生物工程方法的活动。该项目解决了合成生物学,例如设计、合成和完全理解整个基因组的能力有限。具有最少未知成分的细菌(例如肺炎支原体)是实现此目的的理想选择。从生物体的详细实验表征中获得的数据将用于创建预测模型,该模型将指导祖菌株的简化版本的设计和开发。该合作项目结合了基因组分析、全细胞建模和基因组工程方面的专业知识,以合理地构建符合规格的优化细胞底盘。 该项目是通过 ERASynBIO 欧盟-美国跨国融资机制资助的项目的美国合作部分。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonathan Karr其他文献
Jonathan Karr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonathan Karr', 18)}}的其他基金
INSPIRE: Systematic, scalable representation and simulation of whole-cell models
INSPIRE:全细胞模型的系统、可扩展的表示和模拟
- 批准号:
1649014 - 财政年份:2016
- 资助金额:
$ 74.2万 - 项目类别:
Standard Grant