EARS: A Wideband Frequency-Agile Silicon Photonic mm-Wave Receiver with Automatic Jammer Suppression via Rapidly Reconfigurable Optical Notch Filters

EARS:宽带频率捷变硅光子毫米波接收器,通过快速可重构光学陷波滤波器实现自动干扰抑制

基本信息

项目摘要

Future multi-function radios with ultra-wide instantaneous bandwidth and rapid dynamic tuning have great potential to enable increases in wireless broadband communications, and co-existence of radar, radio astronomy, and sensing systems. However, there are fundamental limitations to achieving the required level of frequency selectivity, tuning range and speed using conventional electronic filters within the size, weight, and power targets of radio systems with small form factors. Radio frequency (RF) photonics technology is a promising candidate to enable these widely tunable receivers with wide bandwidth over a broad spectral range with rapid dynamic tuning. Silicon RF photonic filters provide very high selectivity, multi-GHz tuning ranges, and rapid dynamic tuning for radio systems at a chip-scale. However, lack of automatic calibration and adjustment of the initial filter response with very high accuracy, the non-linear effect of the photonic modulator on the receiver performance, and overall front-end sensitivity are major drawbacks of existing silicon RF photonics receivers. This proposal addresses these important issues by employing nano-scale complementary metal-oxide semiconductor (CMOS) electronics, along with the silicon photonic filtering and modulator, for automatic filter response calibration, jammer suppression, modulator adaptive linearization, and low-noise front-end circuitry. The receiver architectures developed in this research will allow the realization of transformative radios with small form factors for wireless communications, radar, and sensing applications.This proposal's research goal is to develop novel chip-scale silicon photonic mm-wave receiver front-end architectures, with high-performance photonic filtering and modulation implemented in a silicon-on-insulator (SOI) optical chip intelligently controlled by a nanometer CMOS chip to allow for rapid filter reconfiguration and jammer rejection. To accomplish this goal, a silicon photonic mm-wave receiver with automatic jammer suppression will be developed. Novel silicon photonic optical filters capable of rapid electronic reconfiguration will be designed and algorithms and hardware for optical band-definition bandpass filter tuning and dynamic notch filter placement for jammer rejection will be developed. Novel CMOS prototypes will include filter tuning loops, modulator drivers with adaptive linearization, and front-end circuitry for testing with the proposed silicon photonic chips. Applying the proposed technology into future wideband multi-function radios with small form factors would yield large instantaneous bandwidth and rapid dynamic filtering, currently not available in state-of-the-art integrated electronic wideband multi-function radios. This project will include an interdisciplinary educational program involving 6 students (3 graduate and 3 undergraduate), with extensive faculty commitment in engaging outreach activities. These activities include involvement in programs such as Electrical and Computer Engineering Unplugged and The Society of Women Engineers one-week summer camps to attract high school students, and on-going interactions with high school teachers via the Enrichment Experiences in Engineering (E3) program. Project results will be broadly disseminated by inclusion in the syllabi and website of a new graduate course entitled "RF Silicon Photonics" and through publication in national and international journals and conferences.
未来的具有超宽瞬时带宽和快速动态调整的多功能无线电可在无线宽带通信增加以及雷达,射电天文学和传感系统的共存中增加巨大的潜力。但是,使用具有较小形式的无线电系统的大小,重量和功率目标内的常规电子过滤器来实现所需的频率选择性,调整范围和速度的基本限制。射频(RF)光子技术是一个有前途的候选人,可以在广泛的光谱范围内允许这些广泛的可调接收器,并快速动态调整。硅RF光子过滤器具有很高的选择性,多GHz调谐范围以及芯片尺度上无线电系统的快速动态调谐。但是,缺乏自动校准和初始过滤器响应的精度非常高,光子调制器对接收器性能的非线性效应以及整体前端灵敏度是现有的硅RF光子接收器的主要缺点。该提案通过采用纳米级互补金属氧化物半导体(CMOS)电子设备来解决这些重要问题电路。这项研究中开发的接收器体系结构将允许实现具有无线通信,雷达和感应应用的较小形式的变革性收音机。该提案的研究目标是开发新颖的芯片级硅光子光子MM波接收机,前端建筑架构,具有高性能的光子过滤和调制,以硅在绝缘子(SOI)的光学芯片(由纳米CMOS CHIP)智能控制的光学芯片中实现,以允许快速过滤器重新配置和抑制作用。为了实现这一目标,将开发一个具有自动干扰器抑制的硅光子MM波接收器。将设计能够快速电子重新配置的新型硅光子光学滤波器,并将开发用于光学带定义带通滤波器调谐的算法和硬件。新型的CMOS原型将包括滤波器调整环,具有适应性线性化的调制器驱动器以及用于使用拟议的硅光子芯片测试的前端电路。将拟议的技术应用于未来的宽带多功能无线电上,具有较小的形式,将产生较大的瞬时带宽和快速的动态滤波,目前在最新的集成电子宽带多功能无线电中尚不可用。该项目将包括一项跨学科教育计划,涉及6名学生(3名研究生和3名本科生),并在参与外展活动方面做出了广泛的教师承诺。这些活动包括参与电气和计算机工程诸如未插电的计划以及女工程师协会为期一周的夏令营,以吸引高中生,以及通过工程学(E3)计划的丰富经验与高中教师进行互动。项目结果将通过包含在教学大纲和新的研究生课程的网站上,题为“ RF Silicon Photonics”以及在国家和国际期刊和会议上的出版中广泛传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samuel Palermo其他文献

Samuel Palermo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samuel Palermo', 18)}}的其他基金

ACED Fab: Co-Design of Novel Electronic-Photonic Systems for Energy-Efficient Coherent Optical Interconnects
ACED Fab:用于节能相干光互连的新型电子-光子系统的协同设计
  • 批准号:
    2314868
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
CAREER: Process, Voltage, and Temperature (PVT)-Tolerant CMOS Photonic Interconnect Transceiver Architectures
职业:耐工艺、电压和温度 (PVT) 的 CMOS 光子互连收发器架构
  • 批准号:
    1254830
  • 财政年份:
    2013
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Advanced Modeling and Design of High-Performance ADC-Based Serial Links
基于高性能 ADC 串行链路的高级建模和设计
  • 批准号:
    1202508
  • 财政年份:
    2012
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant

相似国自然基金

面向软件无线电的可重构宽带低噪声频率源芯片设计研究
  • 批准号:
    62304176
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超宽带稀疏阵列Nyquist折叠接收信号频率和DOA获取方法
  • 批准号:
    62301119
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
宽带高角度稳定性吸波频率选择结构研究
  • 批准号:
    62301199
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于宽带频率转换的中红外量子关联光谱技术研究
  • 批准号:
    12204174
  • 批准年份:
    2022
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于宽带色散移相器的太赫兹频率选择性混合波束成形技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Research on Insulation Properties and Diagnostics for Smart Electric Power Equipment by Measuring Discharge Current Using a Super High Frequency Wideband Measurement System with Picosecond resolution
利用皮秒分辨率超高频宽带测量系统测量放电电流来研究智能电力设备的绝缘性能和诊断
  • 批准号:
    23H01401
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Wideband Envelope Detector for Dynamic Bias Control in Radio-Frequency Integrated Circuit Power Amplifiers
用于射频集成电路功率放大器动态偏置控制的宽带包络检波器
  • 批准号:
    565919-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
SWIFT: Interference Mitigation using Spatial and Frequency Nulling for Wideband mm-Wave Transceivers
SWIFT:使用宽带毫米波收发器的空间和频率归零来减轻干扰
  • 批准号:
    2128558
  • 财政年份:
    2021
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Wideband Silicon-Based Radio-Frequency Front-End Module for 5G New Radio
适用于 5G 新无线电的宽带硅基射频前端模块
  • 批准号:
    LP210100378
  • 财政年份:
    2021
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Linkage Projects
Ultra-wideband test and measurement solutions for radio frequency circuits and systems of 5G front-ends
5G前端射频电路和系统的超宽带测试测量解决方案
  • 批准号:
    500694-2016
  • 财政年份:
    2020
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了