Collaborative Research: Adaptive and Reconfigurable Tiles for Building Surfaces

合作研究:用于建筑表面的自适应和可重构瓷砖

基本信息

项目摘要

The environment continually changes at many different scales and with many different impact levels, and yet, the current U.S. building stock, in general, does not. Current practice for architects and engineers is to isolate the internal space of a building from the external environment with static barriers. Alternatively, substantially greater levels of energy efficiency can be realized by structures that interact with and respond to their environment. This project pursues fundamental research to utilize smart materials to design and optimize exterior building panels that operate as selective filters capable of adapting to environmental stimuli, such as solar insolation. Smart materials provide the unique ability to comprise structures that respond to external stimuli and transform into optimized geometric configurations. Such a morphing façade system will significantly alter the total sustainability of a building envelope and take advantage of available environmental energy sources. Beyond direct application to building technology, this work provides core concepts that can accelerate the implementation of novel adaptive structure concepts in fields such as aeronautics, astronautics, and the automotive industry. This research integrates multiple disciplines, including mechanics, materials engineering, architecture, and computer-aided engineering, as well as a geographically diverse team, and will facilitate mentorship and education of a diverse group of students. The smart material exterior building panels will be realized as modular building tiles comprised of shape memory polymer with controllable local activation and actuation. The technical approach involves three major thrusts: 1) Establishing a computational framework for the development of smart material tile morphing mechanisms; 2) Prototyping the tile concept to evaluate the feasibility of materials and morphing mechanisms and validating the computational methods; and 3) Numerical investigation of building case studies to evaluate the potential benefits of the smart material tile concept to overall building envelope efficiency. In addition to establishing a new concept in responsive building technologies, the computational efforts represent a substantial contribution to the field of computational methods for inverse problems, particularly the formulation of uniquely tractable and generalizable shape-based design objectives that could be used to facilitate accurate and efficient computational inverse solution procedures in a variety of shape-based applications. This work will further establish the concept of smart material morphing structures with controllable local actuation and activation.
环境在许多不同的规模和许多不同的影响水平上不断变化,然而,目前美国的建筑总体上并没有改变,建筑师和工程师目前的做法是将建筑物的内部空间与外部环境隔离开来。或者,通过与环境相互作用并对其做出反应的结构可以实现更高水平的能源效率,该项目致力于利用智能材料来设计和优化外部建筑面板,这些面板作为能够适应环境的选择性过滤器。刺激,例如阳光智能材料具有独特的能力,可以响应外部刺激并转变为优化的几何配置,这种变形立面系统将显着改变建筑围护结构的总体可持续性,并利用现有的环境能源。对于建筑技术,这项工作提供了可以加速新型自适应结构概念在航空、航天和汽车工业等领域的实施的核心概念。这项研究整合了多个学科,包括力学、材料工程、建筑和计算机辅助。工程,以及地域多元化的团队,并将促进对不同学生群体的指导和教育。智能材料外部建筑面板将作为由形状记忆聚合物组成的模块化建筑瓷砖实现,其技术方法涉及。三个主要目标:1)建立智能材料瓦片变形机制的计算框架;2)对瓦片概念进行原型设计,以评估材料和变形机制的可行性并验证计算方法;3)调查建筑案例研究,评估智能材料瓦概念对整体建筑围护结构效率的潜在好处 除了建立响应式建筑技术的新概念外,计算工作还对逆问题的计算方法领域做出了重大贡献。特别是独特的易处理和可概括的基于形状的设计目标的制定,可用于促进各种基于形状的应用中的精确和计算逆解程序。这项工作将进一步建立具有可控的智能材料变形高效结构的概念。局部驱动和激活。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dale Clifford其他文献

Dale Clifford的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dale Clifford', 18)}}的其他基金

Collaborative Research: Merging Human Creativity with Computational Intelligence for the Design of Next Generation Responsive Architecture
协作研究:将人类创造力与计算智能相结合,设计下一代响应式架构
  • 批准号:
    2329759
  • 财政年份:
    2024
  • 资助金额:
    $ 14.46万
  • 项目类别:
    Standard Grant

相似国自然基金

基于深度学习与蒙特卡罗算法的在线质子自适应放疗方法研究
  • 批准号:
    12375359
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于内容自适应选择的生成式视频压缩算法研究
  • 批准号:
    62302466
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
工程化感觉神经在骨修复过程中自适应调控成骨/破骨平衡及其机制研究
  • 批准号:
    82372381
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于时间过滤器的不可压缩磁流体动力学方程自适应方法研究
  • 批准号:
    12301503
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
问题特征驱动的自适应群智能优化算法及其应用研究
  • 批准号:
    62366022
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324936
  • 财政年份:
    2024
  • 资助金额:
    $ 14.46万
  • 项目类别:
    Standard Grant
Collaborative Research: DESC: Type I: FLEX: Building Future-proof Learning-Enabled Cyber-Physical Systems with Cross-Layer Extensible and Adaptive Design
合作研究:DESC:类型 I:FLEX:通过跨层可扩展和自适应设计构建面向未来的、支持学习的网络物理系统
  • 批准号:
    2324937
  • 财政年份:
    2024
  • 资助金额:
    $ 14.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 14.46万
  • 项目类别:
    Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
  • 批准号:
    2413579
  • 财政年份:
    2024
  • 资助金额:
    $ 14.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316612
  • 财政年份:
    2024
  • 资助金额:
    $ 14.46万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了