Collaborative Research: EARS: Broadband Mobile Wireless Access Using mm-Waves Bands Beyond 100 GHz
合作研究:EARS:使用超过 100 GHz 的毫米波频段的宽带移动无线接入
基本信息
- 批准号:1547277
- 负责人:
- 金额:$ 14.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The importance of wireless communication on the quality of our lives and on our economy cannot be overstated. While network operators and researchers have done a tremendous job to improve the capacity of existing networks, there is a strong need to explore new options to support the exponentially growing wireless Internet traffic. This research will investigate a completely new spectrum in the mm-wave band that could enable Gigabit links for mobile users, allowing network operators to expand capacity in a graceful manner. Up to now, mm-wave communication has been mostly limited to either point-to-point links or to short-range communication for fixed terminals. Using mm-wave radios for mobile communication requires a complete rethinking and co-design of the circuits, antennas, packages, and systems and protocols. This research will explore the design of mm-wave circuits and systems at 120 GHz, enabling large arrays of radios to communicate with very high data rates ( 10 Gbps) over relatively long ranges (hundreds of meters). Compared to research below 100 GHz, this area is relatively unexplored, with only about a dozen demonstrations of working transceivers. The research team will investigate system and circuit architectures to support beam forming, beam nulling, multi-user MIMO (multiple-input multiple-output), allowing efficient spectrum re-use through spatial filtering and interference rejection. Novel circuit design concepts will be prototyped in 28 nm CMOS (Complementary Metal-Oxide Silicon) technology along with GaN (Gallium Nitride) transistors for high power transmission. Today's mm-wave transmitters are extremely inefficient when the waveform has a high peak to average ratio (2% average efficiency), whereas the proposed transmitter architectures will increase both the output power and efficiency by an order of magnitude. The range of mm-wave systems realized in CMOS, particularly without the use of lens, will also be increased from a few meters to hundreds of meters. This research will enable the exploitation of completely untapped spectrum for 5G cellular and beyond applications.The technical objective of the proposed collaborative research project is to focus on circuit and system level realization of a hardware platform that can enable the study of optimal beam forming and beam nulling (interference cancellation), while allowing practical measurements to be carried out on the propagation characteristics of indoor and outdoor channels above 100 GHz. Specifically, the PI, co-PI and a team of researchers will design and implement key building blocks for the transceiver to enable measurement and characterization of communication above 100 GHz. This project involves four main thrust areas to be investigated. The first thrust area will focus on transmitter circuit design and integration challenges and explore technology limits for silicon-based power amplifiers for MIMO applications in CMOS, especially above 100 GHz. The second thrust will provide insight regarding the integration of GaN transistors with CMOS to allow for high-density logic for digital signal processing and waveform shaping, and high breakdown voltage GaN devices for power generation. The third thrust will focus on antenna and system architectures to support beam forming with special attention to solving problems regarding LO (local oscillator) generation and distribution and finding the optimal configuration to minimize power consumption in a large array. The final thrust area will focus on investigating system level integration challenges from the sub-modules developed in the other thrust areas to produce a 120GHz transceiver.
无线沟通对我们生活质量和经济的重要性不能被夸大。 尽管网络运营商和研究人员已经做出了巨大的工作来提高现有网络的能力,但迫切需要探索新的选择来支持指数增长的无线互联网流量。 这项研究将调查MM-Wave频段中一个全新的频谱,该频谱可以为移动用户启用千兆位链接,从而使网络运营商可以优雅地扩展容量。 到目前为止,MM波通信主要仅限于点对点链接或固定终端的短距离通信。使用MM-WAVE无线电进行移动通信,需要对电路,天线,软件包以及系统和协议进行完整的重新思考和共同设计。这项研究将探索120 GHz的MM波电路和系统的设计,从而使大量的无线电在相对较长的范围(数百米)上以非常高的数据速率(10 Gbps)进行通信。与低于100 GHz的研究相比,该领域相对尚未探索,只有十二个工作人员的演示。研究团队将调查系统和电路体系结构,以支持光束形成,光束空,多用户MIMO(多输入多输出),从而通过空间滤波和干扰拒绝通过有效的频谱重复使用。新颖的电路设计概念将在28 nm CMO(互补的金属氧化硅)技术以及GAN(氮化碳)晶体管中进行原型,以进行高功率传输。当波形具有较高的峰值与平均比率(平均效率2%)时,当今的MM波发射器效率极低,而拟议的发射器体系结构将增加输出功率和效率的数量级。在CMO中实现的MM波系统的范围,尤其是在不使用镜头的情况下,也将从几米增加到数百米。 This research will enable the exploitation of completely untapped spectrum for 5G cellular and beyond applications.The technical objective of the proposed collaborative research project is to focus on circuit and system level realization of a hardware platform that can enable the study of optimal beam forming and beam nulling (interference cancellation), while allowing practical measurements to be carried out on the propagation characteristics of indoor and outdoor channels above 100 GHz.具体而言,PI,Co-Pi和一组研究人员将设计和实施关键的构建块,以实现100 GHz以上的通信的测量和表征。该项目涉及四个主要的推力区域。第一个推力区域将着重于发射机电路设计和集成挑战,并探索基于硅的功率放大器的技术限制,用于CMO,尤其是100 GHz以上的MIMO应用。第二个推力将提供有关将GAN晶体管与CMO集成的洞察力,以允许用于数字信号处理和波形形状的高密度逻辑,以及用于发电的高击穿电压GAN设备。第三个推力将集中在天线和系统体系结构上,以特别注意解决有关LO(本地振荡器)生成和分布的问题,并找到最佳配置,以最大程度地减少大型阵列中的功耗。最终推力区域将着重研究来自其他推力区域中开发的子模块的系统水平整合挑战,以产生120GHz收发器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michel Kornegay其他文献
Engaging Underrepresented Students in Cybersecurity using Capture-the-Flag(CTF) Competitions (Experience)
通过夺旗 (CTF) 竞赛让代表性不足的学生参与网络安全(经验)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Michel Kornegay;Md Tanvir Arafin;Kevin T. Kornegay - 通讯作者:
Kevin T. Kornegay
Michel Kornegay的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michel Kornegay', 18)}}的其他基金
Undergraduate RF Microwave Engineering Laboratory Project
本科生射频微波工程实验室项目
- 批准号:
0736548 - 财政年份:2008
- 资助金额:
$ 14.6万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
EARS: Collaborative Research: Overcoming Propagation Challenges at Millimeter-Wave Frequencies via Reconfigurable Antennas
EARS:协作研究:通过可重构天线克服毫米波频率的传播挑战
- 批准号:
2029973 - 财政年份:2020
- 资助金额:
$ 14.6万 - 项目类别:
Standard Grant
EARS: Collaborative Research: Maximizing Spatio-Temporal Spectrum Efficiency in the Cloud
EARS:协作研究:最大化云中的时空频谱效率
- 批准号:
1763182 - 财政年份:2017
- 资助金额:
$ 14.6万 - 项目类别:
Standard Grant
Collaborative Research: EARS: Crowd-based Spectrum Monitoring and Enforcement
合作研究:EARS:基于人群的频谱监控和执行
- 批准号:
1833436 - 财政年份:2017
- 资助金额:
$ 14.6万 - 项目类别:
Standard Grant
EARS: Collaborative Research: Automated Enforcement in Spectrum Sharing: Technical Challenges and Policy Considerations
EARS:协作研究:频谱共享的自动执行:技术挑战和政策考虑
- 批准号:
1642949 - 财政年份:2016
- 资助金额:
$ 14.6万 - 项目类别:
Standard Grant
EARS: Collaborative Research: Automated Enforcement in Spectrum Sharing: Technical Challenges and Policy Considerations
EARS:协作研究:频谱共享的自动执行:技术挑战和政策考虑
- 批准号:
1642928 - 财政年份:2016
- 资助金额:
$ 14.6万 - 项目类别:
Standard Grant