XPS: FULL: CCA: Collaborative Research: Automatically Scalable Computation
XPS:完整:CCA:协作研究:自动可扩展计算
基本信息
- 批准号:1533663
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
For over thirty years, each generation of computers has been faster than the one that preceded it. This exponential scaling transformed the way we communicate, navigate, purchase, and conduct science. More recently, this dramatic growth in single processor performance has stopped and has been replaced by new generations of computers with more processors on them; for example, even the cell phones we carry have multiple processors in them. Writing software that effectively leverages multiple processing elements is difficult, and rewriting the decades of accumulated software is both difficult and costly. This research takes a different approach -- rather than converting sequential software into parallel software, this project develops ways to store and reuse computation. Imagine computing only when computer time and energy are cheap and plentiful, storing that computation, and then using it later, when computation might be limited or expensive. The approach used involves making informed predictions about computation likely to happen in the future, proactively executing likely computations in parallel with the actual computation, and then "jumping forward in time" if the actual execution arrives at any of the predicted computations that have already been completed. This research touches many areas within Computer Science, architecture, compilers, machine learning, systems, and theory. Additionally, exploiting massively parallel computation will produce immediate returns in multiple scientific fields that rely on computation.The approach used in this research views computational execution as moving a system through the enormously high dimensional space represented by its registers and memory of a conventional single-threaded processor. It uses machine learning algorithms to observe execution patterns and make predictions about likely future states of the computation. Based on these predictions, the system launches potentially large numbers of speculative threads to execute from these likely computations, while the actual computation proceeds serially. At strategically chosen points, the main computation queries the speculative executions to determine if any of the completed computation is useful; if it is, the main thread uses the speculative computation to immediately begin execution where the speculative computation left off, achieving a speed-up over the serial execution. This approach has the potential to be extremely scalable: the more cores, memory, and communication bandwidth available, the greater the potential for performance improvement. The approach also scales across programs -- if the program running today happens upon a state encountered by a program running yesterday, the program can reuse yesterday's computation. This project has the potential to break new ground for research in many areas in Computer Science touched by it.
三十多年来,每一代计算机都比前一代计算机更快。这种指数级的扩展改变了我们沟通、导航、购买和开展科学的方式。最近,单处理器性能的急剧增长已经停止,并被配备更多处理器的新一代计算机所取代。例如,即使我们携带的手机也有多个处理器。 编写有效利用多个处理元素的软件很困难,重写数十年积累的软件既困难又昂贵。这项研究采用了不同的方法——该项目不是将顺序软件转换为并行软件,而是开发存储和重用计算的方法。想象一下,仅当计算机时间和能源便宜且充足时才进行计算,存储该计算结果,然后在计算可能有限或昂贵时使用它。 所使用的方法包括对未来可能发生的计算做出明智的预测,与实际计算并行地主动执行可能的计算,然后如果实际执行到达任何已经预测的计算,则“及时向前跳跃”。完全的。 这项研究涉及计算机科学、体系结构、编译器、机器学习、系统和理论的许多领域。 此外,利用大规模并行计算将在依赖计算的多个科学领域产生立竿见影的回报。本研究中使用的方法将计算执行视为在由传统单线程的寄存器和内存表示的极高维空间中移动系统。处理器。 它使用机器学习算法来观察执行模式并对计算的未来可能状态进行预测。 根据这些预测,系统启动潜在大量的推测线程来执行这些可能的计算,而实际计算则串行进行。 在策略性选择的点上,主计算查询推测执行以确定已完成的计算是否有用;如果是,则主线程使用推测计算立即开始执行推测计算停止的位置,从而实现串行执行的加速。 这种方法具有高度可扩展性的潜力:可用的内核、内存和通信带宽越多,性能改进的潜力就越大。该方法还可以跨程序扩展——如果今天运行的程序遇到昨天运行的程序遇到的状态,则该程序可以重用昨天的计算。该项目有可能在其涉及的计算机科学许多领域的研究中开辟新天地。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Homer其他文献
Computational Complexity
计算复杂度
- DOI:
10.1007/978-1-4614-1800-9 - 发表时间:
2018-11-15 - 期刊:
- 影响因子:0
- 作者:
L. Fortnow;Steven Homer - 通讯作者:
Steven Homer
A Short History of Computational Complexity
计算复杂性简史
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
L. Fortnow;Steven Homer - 通讯作者:
Steven Homer
Efficient universal quantum circuits
高效通用量子电路
- DOI:
10.26421/qic10.1-2-2 - 发表时间:
2009-07-11 - 期刊:
- 影响因子:0
- 作者:
D. Bera;Stephen A. Fenner;F. Green;Steven Homer - 通讯作者:
Steven Homer
Steven Homer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Homer', 18)}}的其他基金
Quantum Computation and Complexity Theory
量子计算和复杂性理论
- 批准号:
9988310 - 财政年份:2000
- 资助金额:
$ 35万 - 项目类别:
Continuing grant
U.S.-Netherlands Cooperative Research in Complexity Theory (Computer Science)
美国-荷兰复杂性理论合作研究(计算机科学)
- 批准号:
9123551 - 财政年份:1992
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
The Structure of Complete Sets and Polynomial Reducibilities
完备集的结构和多项式可约性
- 批准号:
9103055 - 财政年份:1991
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Parallel Automated Reasoning and Clause-Graph Analysis
并行自动推理和子句图分析
- 批准号:
9003030 - 财政年份:1990
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
The Structure of Complete Sets And Honest Polynomial Reducibilities
完备集结构与诚实多项式可约性
- 批准号:
8814339 - 财政年份:1989
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Applications of Non-Linear Systems to Coding and Communications
非线性系统在编码和通信中的应用
- 批准号:
8608137 - 财政年份:1987
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Non-Linear Recurrence Relations, Quadratic Automata and Applications (Computer Research)
非线性递推关系、二次自动机及其应用(计算机研究)
- 批准号:
8218383 - 财政年份:1982
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Non-Linear Recurrence Relations, Quadratic Automata and Applications (Computer Research)
非线性递推关系、二次自动机及其应用(计算机研究)
- 批准号:
8202942 - 财政年份:1982
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
近代东北南满铁路沿线工业城市的建设和技术传播
- 批准号:52378030
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
薤白基于治疗“脘腹痞满胀痛”传统功效的抗胃癌药效物质基础与作用机制研究
- 批准号:82374014
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于体内代谢产物“谱-量-效”3D分析的厚朴“下气除满”药效物质研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于GPR30对铁蓄积的调控作用研究蒙药那仁满都拉抗骨质疏松的效应及机制
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
内蒙古满都拉-阿巴嘎旗地区晚古生代构造体制转换期的沉积学响应研究
- 批准号:42202239
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
XPS: FULL: CCA: Cymric: A Flexible Processor-Near-Memory System Architecture
XPS:完整:CCA:Cymric:灵活的处理器近内存系统架构
- 批准号:
1533767 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
XPS: FULL: CCA: Collaborative Research: Automatically Scalable Computation
XPS:完整:CCA:协作研究:自动可扩展计算
- 批准号:
1533737 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
XPS: FULL: CCA: NUMB: Exploiting Non-Uniform Memory Bandwidth for Computational Science
XPS:FULL:CCA:NUMB:利用非均匀内存带宽进行计算科学
- 批准号:
1533885 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
XPS: FULL: CCA: Collaborative Research: SPARTA: a Stream-based Processor And Run-Time Architecture
XPS:完整:CCA:协作研究:SPARTA:基于流的处理器和运行时架构
- 批准号:
1547036 - 财政年份:2015
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
XPS: FULL: CCA: Collaborative Research: Automatically Scalable Computation
XPS:完整:CCA:协作研究:自动可扩展计算
- 批准号:
1438983 - 财政年份:2014
- 资助金额:
$ 35万 - 项目类别:
Standard Grant