RI: Small: Theory and Application of Mechanism Design for Team Formation

RI:小:团队形成机制设计理论与应用

基本信息

  • 批准号:
    1526860
  • 负责人:
  • 金额:
    $ 44.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

In a world where complexity of tasks abounds, teamwork is the norm rather than the exception. Formation of effective teams is therefore vital in nearly any organization, and across a broad array of domains, such as large-scale software projects, course projects, military operations, construction projects, and search-and-rescue tasks. Successful team formation, however, hinges on having knowledge about how individuals working on a team complement each other in service of a task, their ability to work together, as well as potentially misaligned preferences about goals that the different tasks may achieve. The goal of this project is to develop a general-purpose team formation exchange service, leveraging new theoretical foundations for designing team formation mechanisms when the abilities and preferences of prospective teammates are uncertain. Such an exchange would significantly improve the ability of organizations to dynamically form agile and efficient project teams, reducing conflict and better aligning individual and organizational incentives. This project considers an exceptionally challenging conceptual and technical problem of mechanism design in the context of team formation in service of a set of goals. The core conceptual challenge lies in modeling the problem in sufficient detail to capture considerations such as achievement of sub-goals by tasks, agent capabilities, task requirements, and agent preferences about goals and teammates, but avoiding unnecessary detail to maintain tractability. The proposed research offers a novel modeling framework aimed at balancing these two considerations. The technical contributions involve both novel theoretical treatment of the problem, such as characterizations of novel extensions of mechanisms from related domains, including combinatorial assignment, entirely new mechanisms tailored to the problem at hand, and algorithmic contributions to optimal scalable automated mechanism design leveraging specific problem structure. Additionally, the proposed research will blend experimental economics research with contributions in theoretical and computational economics by using human subject experiments as one of the means to evaluate the developed mechanisms.
在任务复杂性比比皆是的世界中,团队合作是常态而不是例外。因此,组建有效的团队对于几乎所有组织以及广泛的领域都至关重要,例如大型软件项目、课程项目、军事行动、建筑项目和搜救任务。然而,成功的团队组建取决于了解团队中的个人如何在完成任务时相互补充、他们一起工作的能力,以及对不同任务可能实现的目标可能存在的偏好不一致。该项目的目标是开发一种通用的团队组建交换服务,在潜在队友的能力和偏好不确定时,利用新的理论基础设计团队组建机制。 这种交流将显着提高组织动态组建敏捷高效的项目团队的能力,减少冲突并更好地协调个人和组织的激励措施。该项目考虑了在为一组目标服务的团队组建背景下机制设计的一个极具挑战性的概念和技术问题。核心概念挑战在于对问题进行足够详细的建模,以捕获诸如任务实现子目标、代理能力、任务要求以及代理对目标和队友的偏好等考虑因素,但避免不必要的细节以保持易处理性。拟议的研究提供了一个新颖的建模框架,旨在平衡这两个考虑因素。技术贡献涉及问题的新颖理论处理,例如相关领域机制的新颖扩展的表征,包括组合分配、针对当前问题量身定制的全新机制,以及利用特定问题对最佳可扩展自动化机制设计的算法贡献结构。此外,拟议的研究将通过使用人体实验作为评估所开发机制的手段之一,将实验经济学研究与理论和计算经济学的贡献结合起来。

项目成果

期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Adversarial Regression with Multiple Learners
多个学习者的对抗性回归
Manipulating Elections by Selecting Issues
通过选择问题来操纵选举
Adversarial Classification on Social Networks
社交网络上的对抗性分类
Scalable Initial State Interdiction for Factored MDPs
因子 MDP 的可扩展初始状态拦截
Multi-Channel Marketing with Budget Complementarities
具有预算互补性的多渠道营销
  • DOI:
  • 发表时间:
    2017-05-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haifeng Zhang;Yevgeniy Vorobeychik;Ariel D. Procaccia
  • 通讯作者:
    Ariel D. Procaccia
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yevgeniy Vorobeychik其他文献

Prioritized Allocation of Emergency Responders based on a Continuous-Time Incident Prediction Model
基于连续时间事件预测模型的应急响应人员优先分配
  • DOI:
  • 发表时间:
    2017-05-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ayan Mukhopadhyay;Yevgeniy Vorobeychik;A. Dubey;Gautam Biswas
  • 通讯作者:
    Gautam Biswas
Adversarial Link Prediction in Spatial Networks
空间网络中的对抗性链接预测
GOMAA-Geo: GOal Modality Agnostic Active Geo-localization
GOMAA-Geo:与目标模态无关的主动地理定位
  • DOI:
    10.48550/arxiv.2406.01917
  • 发表时间:
    2024-06-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Anindya Sarkar;S. Sastry;Aleksis Pirinen;Chongjie Zhang;Nathan Jacobs;Yevgeniy Vorobeychik
  • 通讯作者:
    Yevgeniy Vorobeychik
Mechanism Design Based on Beliefs about Responsive Play ( Position Paper )
基于响应式游戏信念的机制设计(立场文件)
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yevgeniy Vorobeychik;Michael P. Wellman
  • 通讯作者:
    Michael P. Wellman
Large-Scale Identification of Malicious Singleton Files
恶意单例文件的大规模识别

Yevgeniy Vorobeychik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yevgeniy Vorobeychik', 18)}}的其他基金

Travel: Doctoral Consortium at the 23rd International Conference on Autonomous Agents and Multiagent Systems
旅行:博士联盟出席第 23 届自主代理和多代理系统国际会议
  • 批准号:
    2341227
  • 财政年份:
    2024
  • 资助金额:
    $ 44.21万
  • 项目类别:
    Standard Grant
RI: Small: Large-Scale Game-Theoretic Reasoning with Incomplete Information
RI:小型:不完整信息的大规模博弈论推理
  • 批准号:
    2214141
  • 财政年份:
    2023
  • 资助金额:
    $ 44.21万
  • 项目类别:
    Standard Grant
FAI: FairGame: An Audit-Driven Game Theoretic Framework for Development and Certification of Fair AI
FAI:FairGame:用于公平人工智能开发和认证的审计驱动的博弈论框架
  • 批准号:
    1939677
  • 财政年份:
    2020
  • 资助金额:
    $ 44.21万
  • 项目类别:
    Standard Grant
RI: Small: Protecting Social Choice Mechanisms from Malicious Influence
RI:小:保护社会选择机制免受恶意影响
  • 批准号:
    1903207
  • 财政年份:
    2019
  • 资助金额:
    $ 44.21万
  • 项目类别:
    Standard Grant
CAREER: Adversarial Artificial Intelligence for Social Good
职业:对抗性人工智能造福社会
  • 批准号:
    1905558
  • 财政年份:
    2018
  • 资助金额:
    $ 44.21万
  • 项目类别:
    Continuing Grant
CAREER: Adversarial Artificial Intelligence for Social Good
职业:对抗性人工智能造福社会
  • 批准号:
    1649972
  • 财政年份:
    2017
  • 资助金额:
    $ 44.21万
  • 项目类别:
    Continuing Grant
Doctoral Mentoring Consortium at the Sixteenth International Conference on Autonomous Agents and Multi-Agent Systems
博士生导师联盟出席第十六届自主代理和多代理系统国际会议
  • 批准号:
    1727266
  • 财政年份:
    2017
  • 资助金额:
    $ 44.21万
  • 项目类别:
    Standard Grant
Integrated Safety Incident Forecasting and Analysis
综合安全事件预测与分析
  • 批准号:
    1640624
  • 财政年份:
    2016
  • 资助金额:
    $ 44.21万
  • 项目类别:
    Standard Grant

相似国自然基金

基于翻译组学理论探究LncRNA H19编码多肽PELRM促进小胶质细胞活化介导电针巨刺改善膝关节术后疼痛的机制研究
  • 批准号:
    82305399
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于小增益理论的物联网聚合计算鲁棒稳定性分析
  • 批准号:
    62303112
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向高阶谐振网络与复杂调制方式的谐振变换器统一多频率小信号建模理论研究
  • 批准号:
    52307196
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

RI: Small: Optimal Transport Generative Adversarial Networks: Theory, Algorithms, and Applications
RI:小型:最优传输生成对抗网络:理论、算法和应用
  • 批准号:
    2327113
  • 财政年份:
    2023
  • 资助金额:
    $ 44.21万
  • 项目类别:
    Continuing Grant
RI: Small: Optimal Transport Generative Adversarial Networks: Theory, Algorithms, and Applications
RI:小型:最优传输生成对抗网络:理论、算法和应用
  • 批准号:
    2327113
  • 财政年份:
    2023
  • 资助金额:
    $ 44.21万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Small: Advancing Theory and Practice of Trustworthy Machine Learning via Bi-Level Optimization
合作研究:RI:小型:通过双层优化推进可信机器学习的理论和实践
  • 批准号:
    2207053
  • 财政年份:
    2022
  • 资助金额:
    $ 44.21万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Small: Advancing Theory and Practice of Trustworthy Machine Learning via Bi-Level Optimization
合作研究:RI:小型:通过双层优化推进可信机器学习的理论和实践
  • 批准号:
    2207052
  • 财政年份:
    2022
  • 资助金额:
    $ 44.21万
  • 项目类别:
    Standard Grant
NSF-BSF: RI: Small: Provably High-Quality Robot Inspection Planning - Theory and Application
NSF-BSF:RI:小型:可证明的高质量机器人检测规划 - 理论与应用
  • 批准号:
    2008475
  • 财政年份:
    2020
  • 资助金额:
    $ 44.21万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了