AGS-PRF: Probing the Relationship Between Radiation Belt Electron Precipitation and Electromagnetic Ion Cyclotron (EMIC) Waves

AGS-PRF:探讨辐射带电子沉淀与电磁离子回旋(EMIC)波之间的关系

基本信息

  • 批准号:
    1524755
  • 负责人:
  • 金额:
    $ 8.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Fellowship Award
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-03-01 至 2018-02-28
  • 项目状态:
    已结题

项目摘要

Just as in the ocean and the atmosphere, waves exist in space plasmas. In these plasmas, where collisions between charged particles are rare, energy can be transferred to a charged particle from a plasma wave (analogous to a surfer on an ocean wave). As a result, plasma waves are a major means of transferring energy from one charged particle population to another, and for energizing a small portion of the population to very high energies. There are many types of plasma waves. Microphysics tells us that plasma waves, called electromagnetic ion cyclotron waves (EMIC), are able to scatter electrons formerly trapped in the radiation belts into the atmosphere where they are lost. However, the relative importance of EMIC waves to the global variability of the radiation belts has been a subject of intense scientific debate for the past 50 years. The main goal of the research is to resolve this debate by combining multi-point conjugate measurements of particles and fields in space with electron precipitation. The capability for making these measurements was recently expanded by the Van Allen Probes and BARREL balloons missions. The grant will support the further training and development of a promising female early-career scientist. The resulting global maps of relativistic electron precipitation will be useful to the broader space physics and aeronomy communities, to researchers studying the chemistry of the middle atmosphere, and for space environment applications, such as active mitigation techniques for both natural and artificial radiation in space.To address the open questions raised above, the methodology is to construct large-scale maps of plasma and wave fields in space and correlated maps of high-energy electrons precipitating into the atmosphere from multiple satellites both at high- and low-Earth orbit. At issue is how long radiation belt electrons actually travel through regions occupied by EMIC waves as they move along closed drift path in the radiation belts. The longer they interact with the EMIC waves the more likely they will be scattered out of their closed drift paths and be lost. If the waves exist only in limited regions that are sparsely distributed throughout the radiation belts, or turn on and off rapidly, their cumulative effects may be insignificant. Comparing these maps not only provides information about the global distribution of plasma waves but also about whether the relationships between the mapped quantities are consistent with EMIC waves. Even if these maps are not consistent with EMIC wave interactions with the energetic particles and cold plasmas, they provide clues to, and place constraints on, other mechanisms..
就像海洋和大气中一样,空间等离子体中也存在波。 在这些等离子体中,带电粒子之间的碰撞很少见,能量可以从等离子体波转移到带电粒子(类似于海浪上的冲浪者)。 因此,等离子体波是将能量从一种带电粒子群转移到另一种带电粒子群以及将一小部分带电粒子群激发到非常高能量的主要手段。 等离子波有多种类型。微观物理学告诉我们,等离子体波,称为电磁离子回旋波(EMIC),能够将先前捕获在辐射带中的电子散射到大气中并在那里消失。 然而,EMIC 波对辐射带全球变化的相对重要性在过去 50 年来一直是科学界激烈争论的主题。该研究的主要目标是通过将空间粒子和场的多点共轭测量与电子沉淀相结合来解决这一争论。 最近,范艾伦探测器和桶气球任务扩大了进行这些测量的能力。 这笔赠款将支持一位有前途的女性早期职业科学家的进一步培训和发展。由此产生的相对论电子降水全球图将有助于更广泛的空间物理学和航空学界、研究中层大气化学的研究人员以及空间环境应用,例如空间自然和人工辐射的主动缓解技术。为了解决上述提出的悬而未决的问题,该方法是构建太空中等离子体和波场的大比例尺地图,以及从高地球轨道和低地球轨道上的多个卫星沉淀到大气中的高能电子的相关地图。 问题在于,当辐射带电子沿着辐射带中的闭合漂移路径移动时,它们实际上穿过 EMIC 波占据的区域需要多长时间。 它们与 EMIC 波相互作用的时间越长,就越有可能被分散到封闭的漂移路径之外并丢失。 如果波仅存在于整个辐射带中稀疏分布的有限区域,或者快速打开和关闭,则它们的累积效应可能微不足道。 比较这些图不仅可以提供有关等离子体波的全局分布的信息,还可以了解所绘制的数量之间的关系是否与 EMIC 波一致。 即使这些图与 EMIC 波与高能粒子和冷等离子体的相互作用不一致,它们也为其他机制提供了线索,并对其他机制施加了限制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lauren Blum其他文献

Tube-shaped nanostructures for enhancing resin-based dental materials: A landscape of evidence and research advancement
用于增强树脂基牙科材料的管状纳米结构:证据和研究进展的景观
  • DOI:
    10.1016/j.smaim.2023.03.002
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Garcia;L. Mokeem;Yasmin Shahkarami;Lauren Blum;Victoria Sheraphim;R. Leonardo;A. Balhaddad;M. Melo
  • 通讯作者:
    M. Melo
Science return of probing magnetospheric systems of ice giants
探测冰巨星磁层系统的科学回报
  • DOI:
    10.3389/fspas.2024.1203705
  • 发表时间:
    2024-03-13
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Xin Cao;Xiangning Chu;Hsiang;Hao Cao;Weijie Sun;Lucas Liuzzo;J. Halekas;Carol Paty;Feng Chu;O. Agiwal;Lauren Blum;F. Crary;Ian Cohen;P. Delamere;M. Hofstadter;G. Hospodarsky;Cooper John;P. Kollmann;E. Kronberg;W. Kurth;L. Lamy;Dong Lin;Wen Li;Xuanye Ma;D. Malaspina;Michiko Morooka;Tom A. Nordheim;F. Postberg;A. Poppe;Cartwright Richard;S. Ruhunusiri;Krista Soderlund;James O'Donoghue;Ferdinand Plaschke
  • 通讯作者:
    Ferdinand Plaschke
Core-shell nanostructures for improving dental restorative materials: A scoping review of composition, methods, and outcome
用于改善牙科修复材料的核壳纳米结构:成分、方法和结果的范围审查
  • DOI:
    10.1016/j.smaim.2022.08.002
  • 发表时间:
    2022-08-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Mokeem;I. Garcia;Yasmin Shahkarami;Lauren Blum;A. Balhaddad;F. Collares;M. Williams;M. Weir
  • 通讯作者:
    M. Weir

Lauren Blum的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lauren Blum', 18)}}的其他基金

Collaborative Research: Energetic Particle Precipitation from the Magnetosphere and Effects on Ozone Dynamics in the Mesosphere and Stratosphere
合作研究:磁层高能粒子沉淀及其对中间层和平流层臭氧动力学的影响
  • 批准号:
    2123253
  • 财政年份:
    2022
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Continuing Grant

相似国自然基金

控释一氧化氮调控促性腺激素释放激素(GnRH)脉冲频率延缓衰老延长寿命及机制研究
  • 批准号:
    82301790
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
光遗传学及去势调控促性腺激素释放激素(GnRH)脉冲频率延缓衰老延长寿命及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
脉冲星偏振随观测频率的变化
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
i-PRF诱导巨噬细胞极化对毛囊生长周期调控的作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于表面等离激元微腔与量子体系强耦合的THz重复频率飞秒脉冲研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

OPP-PRF: Linking the Physical and Chemical Drivers of Carbon Cycling in Arctic Source-to-sink Systems
OPP-PRF:将北极源-汇系统中碳循环的物理和化学驱动因素联系起来
  • 批准号:
    2419995
  • 财政年份:
    2024
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OPP-PRF: Deciphering the Role of Phytoplankton Community Composition in Southern Ocean Carbon Fluxes
博士后奖学金:OPP-PRF:破译浮游植物群落组成在南大洋碳通量中的作用
  • 批准号:
    2317998
  • 财政年份:
    2024
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OCE-PRF: Do dead shells make good homes? Assessing the Development, Stability, and Evolution of Shell Gravel Habitats Across Space and Time
博士后奖学金:OCE-PRF:死去的贝壳能成为美好的家园吗?
  • 批准号:
    2307502
  • 财政年份:
    2024
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
Postdoctoral Fellowship: OCE-PRF: Scaling up herbivore holobiont physiology from genes to populations across a temperate upwelling gradient
博士后奖学金:OCE-PRF:跨温带上升流梯度将食草动物全生物生理学从基因扩展到种群
  • 批准号:
    2308398
  • 财政年份:
    2024
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Standard Grant
AGS-PRF: Characterizing the Physicochemical Properties of Primary and Secondary Ultrafine Particles from Brake Emissions
AGS-PRF:表征制动排放中的一次和二次超细颗粒的物理化学性质
  • 批准号:
    2324901
  • 财政年份:
    2024
  • 资助金额:
    $ 8.6万
  • 项目类别:
    Fellowship Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了