Collaborative Research: Modeling Hydrothermal Recharge and Outflow in Oceanic Crust Analogs with Sharp Permeability Gradients

合作研究:模拟具有尖锐渗透率梯度的洋壳模拟中的热液补给和流出

基本信息

  • 批准号:
    1536705
  • 负责人:
  • 金额:
    $ 7.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Fluid circulation through the oceanic crust at the axis of mid-ocean ridges is a primary mechanism through which the Earth loses its internal heat. At the seafloor, this circulation releases hot fluids into the deep ocean. These hydrothermal sites typically host ecosystems and life forms found nowhere else on the planet and are thought to be one of the places on Earth where life may have originated. Hydrothermal fluid venting often occurs at or near major fault or fracture zones, suggesting that these breaks in the ocean crust can act as highly permeable conduits for fluids escape. It is unclear, however, to what extent these breaks in Earth's crust enable fluids to enter and move downward into the seafloor where they get heated. This research uses analog experiments, using a 3-D printer, and modeling to explore how fluid circulation at mid-ocean ridges spontaneously organizes itself and transports heat in highly fractured and faulted crust. By allowing exploration of the relation between venting sites and major tectonic features, the research facilitates our understanding of geothermal processes and the search for new hydrothermal sites on the seafloor. Broader impacts of the work include integration of research and education and support of three early career investigators, one from an institution in an EPSCoR state (Idaho). Results have applications ranging from terrestrial groundwater hydrology to geothermal energy, carbon sequestration, and the oil industry.This research employs numerical and analog experiments to describe and quantitatively explain the effect of heterogeneous permeability on subsurface flow geometry and heat extraction. Using a 3-D printer, we will generate plastic analogs of oceanic crust, containing a series of regularly spaced tubes that will act as fluid pathways of defined permeability. Within this permeable matrix, a planar slot of prescribed width, inclination, and greater permeability (achieved through wider tubes) will be created, representing the damage zone that typically surrounds active faults. The printed volume will be placed in a glass-walled tank containing a mixture of glucose and water. The fluid will be heated from below to initiate porous convection. A combination of particle image velocimetry, thermo-chromic liquid crystals, and temperature sensors at the top and bottom of the volume will allow quantification of the locations of fluid recharge and discharge and the heat output of the convective system as the permeability contrast and geometry of the slot is varied. Results will be compared to numerical models of porous convection in heterogeneous media and then extrapolated to natural conditions. The research will focus on predicting the conditions under which high-permeability fault zones can trap and focus hydrothermal convection rolls. The combined experimental and theoretical approach will greatly inform the investigation of targeted hydrothermal sites on slow-spreading mid-ocean ridges that sit next to major fault systems or near major crustal heterogeneities.
通过海洋脊的轴线穿过海洋壳的流体循环是一种主要的机制,地球通过该机制失去其内部热量。在海底,这种循环将热液释放到深海中。这些水热遗址通常是地球上没有其他地方的生态系统和生命形式,被认为是地球上生命可能产生的地方之一。水热流体通常发生在主要断层或断裂区域,这表明海壳中的这些断裂可以充当液体逸出的高度渗透导管。然而,尚不清楚地球地壳​​中的这些断裂在多大程度上使液体能够进入并向下移动到海底,在那里它们被加热。这项研究使用模拟实验,使用3D打印机和建模来探索中山脊的流体循环如何自发地组织自身并在高度断裂和断层的外壳中运输热量。通过允许探索通风站点与主要构造特征之间的关系,该研究促进了我们对地热过程的理解,并寻找海底上新的热液地点。 这项工作的更广泛的影响包括研究和教育的整合以及三名早期职业研究者的支持,其中一名来自EPSCOR州(爱达荷州)的机构。 结果的应用包括从陆地地下水水文到地热能,碳固执以及石油工业。这项研究采用数值和模拟实验来描述和定量解释异质渗透性对地下流量几何形状和热量提取的影响。使用3-D打印机,我们将生成海洋外壳的塑料类似物,其中包含一系列定期间隔的管,这些管将充当定义的渗透性的流体途径。在此渗透的矩阵中,将创建一个规定的宽度,倾斜度和更大的渗透性(通过更宽的管实现)的平面插槽,代表通常围绕着活动故障的损伤区。印刷体积将放置在玻璃壁油箱中,其中包含葡萄糖和水的混合物。流体将从下方加热以引发多孔对流。体积顶部和底部的粒子图像速度计,热染色液晶和温度传感器的组合将允许量化流体充电和放电的位置,以及对流系统的热量输出作为渗透性对比度和几何形状插槽变化。 结果将与异质培养基中多孔对流的数值模型进行比较,然后推断为自然条件。这项研究将重点介绍预测高渗透性断层区域可以捕获并集中热液对流掷骰的条件。合并的实验和理论方法将在慢慢地散布的中端脊或靠近主要的地壳异质性的较慢的中山脊上对有针对性的水热位点的研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Sohn其他文献

Robert Sohn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Sohn', 18)}}的其他基金

Collaborative Research: Investigating the Detachment Fault Cycle at the Mid-Cayman Spreading Center
合作研究:调查开曼中部扩张中心的脱离断层旋回
  • 批准号:
    2104492
  • 财政年份:
    2022
  • 资助金额:
    $ 7.32万
  • 项目类别:
    Continuing Grant
Seismicity of peridotite alteration
橄榄岩蚀变的地震活动
  • 批准号:
    2147529
  • 财政年份:
    2022
  • 资助金额:
    $ 7.32万
  • 项目类别:
    Continuing Grant
Collaborative Research: Laboratory and theoretical study of geyser dynamics
合作研究:间歇泉动力学的实验室和理论研究
  • 批准号:
    2050785
  • 财政年份:
    2021
  • 资助金额:
    $ 7.32万
  • 项目类别:
    Standard Grant
RAPID: Short-period Seismic Study of Actively Serpentinizing Lithosphere in the Oman Ophiolite
RAPID:阿曼蛇绿岩岩石圈活跃蛇纹石化的短期地震研究
  • 批准号:
    1945305
  • 财政年份:
    2019
  • 资助金额:
    $ 7.32万
  • 项目类别:
    Standard Grant
Collaborative Research: The origin and propagation of shallow water microseisms: a multidisciplinary study at Yellowstone Lake
合作研究:浅水微震的起源和传播:黄石湖的多学科研究
  • 批准号:
    1760056
  • 财政年份:
    2018
  • 资助金额:
    $ 7.32万
  • 项目类别:
    Continuing Grant
Seismicity and Fault Structure of Oceanic Detachment Faults
大洋拆离断层的地震活动与断层结构
  • 批准号:
    1458084
  • 财政年份:
    2015
  • 资助金额:
    $ 7.32万
  • 项目类别:
    Standard Grant
Collaborative Research: Alteration of Mantle Peridotite: Geochemical Fluxes and Dynamics of Far from Equilibrium Transport
合作研究:地幔橄榄岩的蚀变:地球化学通量和远离平衡输运的动力学
  • 批准号:
    1516313
  • 财政年份:
    2015
  • 资助金额:
    $ 7.32万
  • 项目类别:
    Standard Grant
Collaborative Research: The Response of Continental Hydrothermal Systems to Tectonic, Magmatic, and Climatic Forcing
合作研究:大陆热液系统对构造、岩浆和气候强迫的响应
  • 批准号:
    1516361
  • 财政年份:
    2015
  • 资助金额:
    $ 7.32万
  • 项目类别:
    Continuing Grant
Analysis of Hydraulic Seismicity at the TAG Hydrothermal Mound
TAG热液丘水力地震活动分析
  • 批准号:
    0647221
  • 财政年份:
    2007
  • 资助金额:
    $ 7.32万
  • 项目类别:
    Continuing Grant
Collaborative Research: Hydrothermal Processes on the Gakkel Ridge
合作研究:Gakkel 海脊的热液过程
  • 批准号:
    0425838
  • 财政年份:
    2004
  • 资助金额:
    $ 7.32万
  • 项目类别:
    Standard Grant

相似国自然基金

几何造型与机器学习融合的图像数据拟合问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
产能共享背景下的制造型企业运营决策研究:基于信息共享与数据质量的视角
  • 批准号:
    72271252
  • 批准年份:
    2022
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
构造型深部岩体动力灾害的孕育和发生全过程机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
轴流压气机端壁造型流动机理及设计技术研究
  • 批准号:
    52076179
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
基于知识重用的车身自动几何建模方法研究
  • 批准号:
    51905389
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 7.32万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 7.32万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344259
  • 财政年份:
    2024
  • 资助金额:
    $ 7.32万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 7.32万
  • 项目类别:
    Standard Grant
Collaborative Research: Ionospheric Density Response to American Solar Eclipses Using Coordinated Radio Observations with Modeling Support
合作研究:利用协调射电观测和建模支持对美国日食的电离层密度响应
  • 批准号:
    2412294
  • 财政年份:
    2024
  • 资助金额:
    $ 7.32万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了