Numerical Solution of Constrained Optimization Problems Governed by Partial Differential Equations with Uncertain Parameters

参数不确定的偏微分方程约束优化问题的数值求解

基本信息

  • 批准号:
    1522798
  • 负责人:
  • 金额:
    $ 21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-15 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

This project will provide new mathematical algorithms and theoretical analyses for the solution of optimization problems governed by partial differential equations (PDEs) with uncertain parameters. These problems arise in many science and engineering decision making applications, where a decision has to be made before the realization of uncertain inputs can be observed that will impact the outcome of the decision. The uncertainty can be incorporated into the optimization formulation using so-called risk measures, which typically involve the expected value of the quantity of interest and a measure of its deviation from the expected value. In principle, these formulations allow one to compute decisions that balance maximization of their expected outcome and minimization of the risk due to uncertainty. However, the numerical solution of these problems presents many theoretical and algorithmic challenges. For example, the numerical solution requires some sort of sampling of the random inputs, which can make these PDE constrained optimization problems extremely expensive to solve. To address several of the above mentioned challenges, this research will provide theoretical analyses of the well-posedness and of optimality conditions for a class of semilinear elliptic PDE constrained optimization problems, and it will derive discretization error bounds for sparse grid and quasi Monte Carlo discretizations applied to PDE constrained optimization. Furthermore, it will develop and analyze adaptive methods which reduce the total number of samples needed, or incorporate reduced order models. This research is at the interface between stochastic programming, deterministic PDE constrained optimization, and solution of PDEs with random inputs, and it will make algorithmic and theoretical contributions to these areas. The application of theories and numerical methods to example problems will serve as a model for other researchers and decision makers, and will lead to more efficient algorithms for important classes of decision making under uncertainty. Results will be disseminated through publication of algorithms and results. In addition, the results of the project will be used in regularly offered courses on the theory and applications of optimization as well as in special courses on PDE constrained optimization under uncertainty aiming at students in both mathematics and engineering.
该项目将为解决由参数不确定的偏微分方程(PDE)控制的优化问题提供新的数学算法和理论分析。这些问题出现在许多科学和工程决策应用中,在这些应用中,必须在观察到会影响决策结果的不确定输入的实现之前做出决策。可以使用所谓的风险度量将不确定性纳入优化公式中,风险度量通常涉及感兴趣数量的预期值以及其与预期值的偏差的度量。原则上,这些公式允许人们计算出平衡预期结果最大化和不确定性风险最小化的决策。然而,这些问题的数值求解提出了许多理论和算法挑战。 例如,数值解需要对随机输入进行某种采样,这会使这些偏微分方程约束优化问题的解决成本极其昂贵。为了解决上述几个挑战,本研究将对一类半线性椭圆偏微分方程约束优化问题的适定性和最优性条件进行理论分析,并导出稀疏网格和准蒙特卡洛离散化的离散化误差界应用于 PDE 约束优化。此外,它将开发和分析减少所需样本总数或合并降阶模型的自适应方法。这项研究处于随机规划、确定性 PDE 约束优化和随机输入 PDE 求解之间的交叉点,将为这些领域做出算法和理论贡献。将理论和数值方法应用于示例问题将为其他研究人员和决策者提供模型,并将为不确定性下的重要决策类别带来更有效的算法。结果将通过发布算法和结果来传播。此外,该项目的成果还将用于常规优化理论与应用课程以及针对数学和工程专业学生的不确定性下偏微分方程约束优化专题课程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthias Heinkenschloss其他文献

Sensitivity Technologies for Large Scale Simulation
大规模仿真的灵敏度技术
  • DOI:
    10.2172/921606
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Collis;R. Bartlett;Thomas Michael Smith;Matthias Heinkenschloss;Lucas C. Wilcox;Judith C. Hill;Omar Ghattas;Martin Olof Berggren;V. Akçelik;C. Ober;B. van Bloemen Waanders;E. Keiter
  • 通讯作者:
    E. Keiter
g Institut für Mathematik
g 数学研究所
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harbir Antil;Matthias Heinkenschloss;Ronald H. W. Hoppe;Danny C. Sorensen
  • 通讯作者:
    Danny C. Sorensen
Interpolatory model reduction of quadratic-bilinear dynamical systems with quadratic-bilinear outputs
具有二次双线性输出的二次双线性动力系统的插值模型简化
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Alejandro N. Diaz;Matthias Heinkenschloss;I. V. Gosea;A. Antoulas
  • 通讯作者:
    A. Antoulas

Matthias Heinkenschloss的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthias Heinkenschloss', 18)}}的其他基金

Novel Multiple-Shooting Algorithms for Optimization Governed by Time-Dependent Partial Differential Equations
时相关偏微分方程控制的新型多重射击优化算法
  • 批准号:
    1819144
  • 财政年份:
    2018
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Reduced Order Model Approaches for Time Dependent Nonlinear PDE Constrained Optimization
协作研究:用于瞬态非线性 PDE 约束优化的降阶模型方法
  • 批准号:
    1115345
  • 财政年份:
    2011
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Efficient Solution of Advection Dominated PDE Constrained Optimization Problems
平流主导偏微分方程约束优化问题的高效求解
  • 批准号:
    0915238
  • 财政年份:
    2009
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Collaborative Research: Multigrid Methods for PDE Constrained Optimization
协作研究:偏微分方程约束优化的多重网格方法
  • 批准号:
    0511624
  • 财政年份:
    2005
  • 资助金额:
    $ 21万
  • 项目类别:
    Continuing Grant
ITR/AP COLLABORATIVE RESEARCH: Real Time Optimization for Data Assimilation and Control of Large Scale Dynamic Simulations
ITR/AP 合作研究:大规模动态模拟数据同化和控制的实时优化
  • 批准号:
    0121360
  • 财政年份:
    2001
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Optimization of Parabolic Systems: Iterative Methods, Suboptimal Controls, and Preconditioning
抛物线系统的优化:迭代方法、次优控制和预处理
  • 批准号:
    0075731
  • 财政年份:
    2000
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Mathematical Sciences Scientific Computing Research Environments
数学科学科学计算研究环境
  • 批准号:
    9872009
  • 财政年份:
    1998
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Optimization Methods for Optimal Control and Parameter Identification Problems
数学科学:最优控制和参数辨识问题的优化方法
  • 批准号:
    9403699
  • 财政年份:
    1994
  • 资助金额:
    $ 21万
  • 项目类别:
    Standard Grant

相似国自然基金

从定性到定量:基于自然解决方案的长江口湿地后生态工程评价
  • 批准号:
    32371621
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于超声单模态影像融合实时规划技术实现肝脏肿瘤热消融最优穿刺路径解决方案
  • 批准号:
    82371986
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
数智驱动下高科技企业场景式解决方案研究:理论模型、构建机制及市场响应性
  • 批准号:
    72272082
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
晶界偏聚对CdTe太阳电池梯度吸收层体系的影响机制及解决方案
  • 批准号:
    62174070
  • 批准年份:
    2021
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
约束作用下金属锂全电池负极退化机理原位监测及解决方案
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Efficient Numerical Solution for Constrained Tensor Ring Decomposition: A Theoretical Convergence Analysis and Applications
约束张量环分解的高效数值解:理论收敛性分析及应用
  • 批准号:
    20K19749
  • 财政年份:
    2020
  • 资助金额:
    $ 21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Exact and heuristic solution methods for time-constrained vehicle routing
时间受限车辆路径的精确启发式求解方法
  • 批准号:
    157935-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
Exact and heuristic solution methods for time-constrained vehicle routing
时间受限车辆路径的精确启发式求解方法
  • 批准号:
    157935-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
Optimization on Manifolds for the Numerical Solution of Equality Constrained Variational Problems
等式约束变分问题数值解的流形优化
  • 批准号:
    318513007
  • 财政年份:
    2016
  • 资助金额:
    $ 21万
  • 项目类别:
    Research Grants
Exact and heuristic solution methods for time-constrained vehicle routing
时间受限车辆路径的精确启发式求解方法
  • 批准号:
    157935-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 21万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了