CDS&E-MSS/Collaborative Research: Sequential Design for Stochastic Control: Active Learning of Optimal Policies
CDS
基本信息
- 批准号:1521743
- 负责人:
- 金额:$ 21.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project aims to build new cross-disciplinary algorithms that blend concepts from applied probability, control, and statistical modeling to tackle computational challenges in large-scale optimization. Creation of such new links is another step in building a next-generation of high-performance algorithms needed to meet the increasingly complex problems arising in applications as diverse as finance, energy storage and security, and the management of epidemics. The project's research agenda is grounded in two concrete application areas where it is crucial to tackle industrial-grade high-fidelity models. One is the efficient management of cycled commodity assets, including gas storage, battery storage, or fleets of power plants as energy infrastructure is transitioned to the "smart grid." A second is timely and effective response to unfolding infectious disease outbreaks, notably influenza. Both present major cross-disciplinary challenges. We see vast potential for algorithms which expand capabilities for aspects of quantitative control, and thus provide higher quality information to decision makers. Our goal is to produce a smarter, more targeted, use of random numbers in a new wave of lean stochastic solvers, and subsequently an expansion of the size of problems that can be tackled with existing computing capabilities. The educational core of the project contributes to inter-disciplinary training in mathematical sciences across undergraduate, graduate and postdoctoral levels. The collaborative initiatives will also enhance the research infrastructure through exchange of ideas between the two campuses (University of California-Santa Barbara and University of Chicago) and communities of statisticians, operations researchers and engineers. All algorithms would be documented and publicly released to the wider scientific community. Deployment of simulation based schemes remains key for control of stochastic systems that require realistic high-fidelity representations. This project will develop new Monte Carlo algorithms for a class of stochastic control problems by erecting novel bridges between dynamic control and methods of sequential design and statistical learning. Our research agenda hinges on sequential, active learning of optimal action sets, so that the algorithms adaptively allocate computing resources to better enhance fidelity of the approximated control strategies. Such targeted use of Monte Carlo simulations links approximate dynamic programming with response surface modeling, marrying two so-far disparate areas of applied mathematics and statistics. The resulting adaptive schemes will facilitate orders of magnitude savings in simulation budgets, expanding the frontier for predictive modeling and decision making under uncertainty. The proposed research will advance the theory of algorithms for dynamic control over massive multi-dimensional state spaces, where curses of dimensionality are unavoidable. Simultaneously, integration of the statistical and computational theories in this direction will open new lines of interdisciplinary quantitative research. Through enhancing knowledge discovery in large-scale control settings, the projects will facilitate transition to practice in novel contexts. With the aim of reaching out to diverse users from the mathematical, biological, physical and engineering sciences, producing general purpose open-source software via R packages is a primary deliverable of the project, and will be supplemented by a database of case studies.
该研究项目旨在构建新的跨学科算法,融合应用概率、控制和统计建模的概念,以应对大规模优化中的计算挑战。创建此类新链接是构建下一代高性能算法的又一步,这些算法需要满足金融、能源存储和安全以及流行病管理等多种应用中出现的日益复杂的问题。该项目的研究议程基于两个具体的应用领域,这对于解决工业级高保真模型至关重要。一是随着能源基础设施向“智能电网”过渡,对循环商品资产进行有效管理,包括天然气储存、电池储存或发电厂群。第二是及时有效地应对正在发生的传染病爆发,特别是流感。两者都提出了重大的跨学科挑战。我们看到算法的巨大潜力,可以扩展定量控制方面的能力,从而为决策者提供更高质量的信息。我们的目标是在新一波精益随机求解器中产生更智能、更有针对性的随机数使用,并随后扩大可以用现有计算能力解决的问题的规模。该项目的教育核心有助于本科生、研究生和博士后水平的数学科学跨学科培训。这些合作举措还将通过两个校区(加州大学圣巴巴拉分校和芝加哥大学)以及统计学家、运筹学研究人员和工程师社区之间的思想交流来加强研究基础设施。所有算法都将被记录并公开发布给更广泛的科学界。基于仿真的方案的部署仍然是控制需要真实高保真表示的随机系统的关键。该项目将通过在动态控制与顺序设计和统计学习方法之间建立新的桥梁,为一类随机控制问题开发新的蒙特卡罗算法。我们的研究议程取决于最优动作集的顺序主动学习,以便算法自适应地分配计算资源,以更好地增强近似控制策略的保真度。蒙特卡洛模拟的这种有针对性的使用将近似动态规划与响应面建模联系起来,将应用数学和统计学这两个迄今为止不同的领域结合起来。由此产生的自适应方案将有助于节省模拟预算,扩大不确定性下预测建模和决策的前沿。所提出的研究将推进大规模多维状态空间动态控制的算法理论,其中维数灾难是不可避免的。同时,统计和计算理论在这个方向上的整合将开辟跨学科定量研究的新路线。通过加强大规模控制环境中的知识发现,这些项目将促进在新环境中向实践的过渡。为了接触数学、生物、物理和工程科学领域的不同用户,通过 R 包生成通用开源软件是该项目的主要交付成果,并将由案例研究数据库作为补充。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evaluating Gaussian process metamodels and sequential designs for noisy level set estimation
评估高斯过程元模型和顺序设计以进行噪声水平集估计
- DOI:10.1007/s11222-021-10014-w
- 发表时间:2018-07-18
- 期刊:
- 影响因子:2.2
- 作者:Xiong Lyu;M. Binois;M. Ludkovski
- 通讯作者:M. Ludkovski
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Ludkovski其他文献
Extreme Scenario Selection in Day-Ahead Power Grid Operational Planning
日前电网运行规划中的极端场景选择
- DOI:
10.48550/arxiv.2309.11067 - 发表时间:
2023-09-20 - 期刊:
- 影响因子:0
- 作者:
Guillermo Terr'en;Michael Ludkovski - 通讯作者:
Michael Ludkovski
Optimal Dynamic Policies for Influenza Management
流感管理的最佳动态政策
- DOI:
10.2202/1948-4690.1020 - 发表时间:
2010-10-12 - 期刊:
- 影响因子:0
- 作者:
Michael Ludkovski;Jarad Niemi - 通讯作者:
Jarad Niemi
Michael Ludkovski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Ludkovski', 18)}}的其他基金
Collaborative Research: Pacific Alliance for Low-Income Inclusion in Statistics & Data Science
合作研究:太平洋低收入统计联盟
- 批准号:
2221421 - 财政年份:2022
- 资助金额:
$ 21.84万 - 项目类别:
Continuing Grant
Collaborative Research: Gaussian Process Frameworks for Modeling and Control of Stochastic Systems
合作研究:随机系统建模和控制的高斯过程框架
- 批准号:
1821240 - 财政年份:2018
- 资助金额:
$ 21.84万 - 项目类别:
Standard Grant
AMPS: Collaborative Research: Stochastic Modeling of the Power Grid
AMPS:协作研究:电网随机建模
- 批准号:
1736439 - 财政年份:2017
- 资助金额:
$ 21.84万 - 项目类别:
Standard Grant
Conference on Stochastic Asymptotics and Applications, September 25-27, 2014
随机渐近学及其应用会议,2014 年 9 月 25-27 日
- 批准号:
1413574 - 财政年份:2014
- 资助金额:
$ 21.84万 - 项目类别:
Standard Grant
Collaborative Research: ATD: Sequential Quickest Detection and Identification of Multiple Co-dependent Epidemic Outbreaks
合作研究:ATD:多种相互依赖的流行病爆发的顺序最快检测和识别
- 批准号:
1222262 - 财政年份:2012
- 资助金额:
$ 21.84万 - 项目类别:
Standard Grant
Workshop on Financial Engineering Methods for Insurance Mathematics
保险数学金融工程方法研讨会
- 批准号:
0649523 - 财政年份:2007
- 资助金额:
$ 21.84万 - 项目类别:
Standard Grant
相似国自然基金
“免疫细胞介导运输-瘤内菌控释”型中药组分ZIF给药系统的构建及其抗MSS型结直肠癌免疫增效研究
- 批准号:82374045
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
CARD11负调控炎症小体-IL-18通路介导NK细胞失能在MSS型结直肠癌免疫治疗耐受中的机制研究
- 批准号:82373402
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
HERC3/CYP2B6/GSDMB轴通过调控CD8+T细胞介导的肠癌细胞焦亡改善MSS型结直肠癌PD-1抗体疗效的机制研究
- 批准号:82303012
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
PRMT5通过USP7依赖性IFNAR1降解抑制I型干扰素反应及DC1s激活促进MSS型结肠癌免疫逃逸的研究
- 批准号:82373275
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
乙酰转移酶KAT6A促进胆固醇代谢诱导Th17细胞分化致MSS型肠癌PD-1单抗耐药的机制研究
- 批准号:82373372
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CDS&E-MSS: Community detection via covariance structures
合作研究:CDS
- 批准号:
2245380 - 财政年份:2023
- 资助金额:
$ 21.84万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E-MSS: Community detection via covariance structures
合作研究:CDS
- 批准号:
2245381 - 财政年份:2023
- 资助金额:
$ 21.84万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E-MSS: Community detection via covariance structures
合作研究:CDS
- 批准号:
2401020 - 财政年份:2023
- 资助金额:
$ 21.84万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E-MSS: Deep Network Compression and Continual Learning: Theory and Application
合作研究:CDS
- 批准号:
2053480 - 财政年份:2021
- 资助金额:
$ 21.84万 - 项目类别:
Continuing Grant
Collaborative Research: CDS&E-MSS: Deep Network Compression and Continual Learning: Theory and Application
合作研究:CDS
- 批准号:
2053448 - 财政年份:2021
- 资助金额:
$ 21.84万 - 项目类别:
Continuing Grant