NRI: Novel Prosthetic Arm Control Based on a Low-Dimensional Internal Musculoskeletal Biomechanical (LIMB) Model
NRI:基于低维内部肌肉骨骼生物力学 (LIMB) 模型的新型假肢控制
基本信息
- 批准号:1527202
- 负责人:
- 金额:$ 87.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2019-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Upper limb amputation is a major cause of disability for nearly 160,000 Americans, many of whom could benefit from emergent sophisticated robotic, multifunctional prosthetic arms/hands. In these advanced prostheses, movements are typically controlled by interpreting the user's electromyographic (EMG) signals from residual or reinnervated muscles. State-of-the-art pattern recognition (PR) has been the most promising EMG control interface for multifunctional artificial arms. However, EMG PR-based control algorithms often require lengthy and frequent algorithm training and lack reliability when the external loading or arm posture changes. This is partly because EMG PR is data-driven and does not account for the behavior of the underlying neural or biomechanical system from which the EMG signals are sourced. The objective of this project is to develop a novel EMG control of multifunctional transradial (TR) prostheses based on a systematic study of neuromuscular control and biomechanical roles of residual muscles in TR amputees. This research can potentially enhance the health, function, and quality of life of upper limb amputees. This project's concept, methods, and frameworks for enhancing EMG-based prosthesis control may be extended to other assistive robotics to benefit other patient populations such as stroke survivors. This project will impact STEM education by promoting project-based cross-training among K-12, undergraduate, and graduate students in underrepresented groups including females, minorities, and students with disabilities. The research may also impact the neuroscience and movement science communities by elucidating the control mechanism of the arm/hand and unveiling new knowledge of neuroplasticity and the internal model in upper limb amputees. At the core of the multifunctional prosthesis control is a musculoskeletal model of the missing limb that will be used to interpret intended joint motions from EMG signals. The intellectual merit of this project includes a new concept for the control of robotic, multifunctional prosthetic arms/hands. The PIs' musculoskeletal model-based interface is fundamentally different from existing data-driven, EMG PR-based control because it interprets EMG signals and decodes user movement intent in a more biological way. Additionally, this effort will result in new knowledge regarding the neuroplasticity, neuromuscular control, and perceived biomechanical roles of residual muscles in upper limb amputees, which has not been systematically investigated based on the investigators' knowledge. Ultimately, the project will result in a new prosthesis control that, compared to state-of-the-art EMG PR-based control, may require significantly fewer and shorter calibrations, provide more intuitive, robust control (against posture changes, external loading, etc.), and enable multi-joint coordinated prosthesis operations. The investigators expect that the research may transform the way in which upper limb amputees operate multifunctional prostheses in daily life.
上肢截肢是近 16 万美国人残疾的主要原因,其中许多人可以从新兴的复杂机器人、多功能假肢/手中受益。在这些先进的假肢中,通常通过解释来自残余或重新神经支配的肌肉的用户肌电图 (EMG) 信号来控制运动。最先进的模式识别(PR)已成为多功能人工手臂最有前途的肌电图控制接口。然而,基于EMG PR的控制算法往往需要长时间且频繁的算法训练,并且在外部负载或手臂姿势变化时缺乏可靠性。部分原因是 EMG PR 是数据驱动的,没有考虑 EMG 信号来源的基础神经或生物力学系统的行为。该项目的目标是基于对TR截肢者残余肌肉的神经肌肉控制和生物力学作用的系统研究,开发一种新型的多功能经桡动脉(TR)假肢的肌电图控制。这项研究有可能增强上肢截肢者的健康、功能和生活质量。该项目用于增强基于肌电图的假肢控制的概念、方法和框架可以扩展到其他辅助机器人技术,以造福其他患者群体,例如中风幸存者。该项目将通过促进 K-12、本科生和研究生(包括女性、少数族裔和残疾学生)中代表性不足的群体中基于项目的交叉培训来影响 STEM 教育。该研究还可能通过阐明手臂/手的控制机制并揭示上肢截肢者的神经可塑性和内部模型的新知识来影响神经科学和运动科学界。多功能假肢控制的核心是缺失肢体的肌肉骨骼模型,该模型将用于解释肌电图信号的预期关节运动。该项目的智力优势包括控制机器人、多功能假肢手臂/手的新概念。 PI 基于肌肉骨骼模型的界面与现有的数据驱动、基于 EMG PR 的控制有着根本的不同,因为它以更生物学的方式解释 EMG 信号并解码用户的运动意图。此外,这项工作还将产生关于上肢截肢者残余肌肉的神经可塑性、神经肌肉控制和感知生物力学作用的新知识,这些知识尚未根据研究人员的知识进行系统研究。最终,该项目将产生一种新的假肢控制,与最先进的基于 EMG PR 的控制相比,可能需要更少和更短的校准,提供更直观、更稳健的控制(针对姿势变化、外部负载、等),并实现多关节协调假肢操作。研究人员预计,这项研究可能会改变上肢截肢者在日常生活中操作多功能假肢的方式。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reliable Vision-Based Grasping Target Recognition for Upper Limb Prostheses
- DOI:10.1109/tcyb.2020.2996960
- 发表时间:2022-03-01
- 期刊:
- 影响因子:11.8
- 作者:Zhong, Boxuan;Huang, He;Lobaton, Edgar
- 通讯作者:Lobaton, Edgar
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
He Huang其他文献
A Pareto optimal Bloom filter family with hash adaptivity
具有哈希自适应性的帕累托最优布隆过滤器系列
- DOI:
10.1007/s00778-022-00755-z - 发表时间:
2022-07 - 期刊:
- 影响因子:0
- 作者:
Meng Li;Rongbiao Xie;Deyi Chen;Haipeng Dai;Rong Gu;He Huang;Wanchun Dou;Guihai Chen - 通讯作者:
Guihai Chen
A Method to Suppress the Coupling of Dual-Frequency Antennas
一种抑制双频天线耦合的方法
- DOI:
10.1109/lawp.2021.3086810 - 发表时间:
2021-06 - 期刊:
- 影响因子:4.2
- 作者:
He Huang;Xiaoping Li;Yanming Liu - 通讯作者:
Yanming Liu
MD-1 Deficiency Accelerates Myocardial Inflammation and Apoptosis in Doxorubicin-Induced Cardiotoxicity by Activating the TLR4/MAPKs/Nuclear Factor kappa B (NF-κB) Signaling Pathway
MD-1 缺乏通过激活 TLR4/MAPKs/核因子 kappa B (NF-κB) 信号通路加速多柔比星诱导的心脏毒性中的心肌炎症和细胞凋亡
- DOI:
10.12659/msm.919861 - 发表时间:
2019-10 - 期刊:
- 影响因子:3.1
- 作者:
Yingjun Zhang;He Huang;Yu Liu;Bin Kong;Guangji Wang - 通讯作者:
Guangji Wang
Development of superconducting joints between iron-based superconductor tapes
铁基超导带材间超导接头的研制
- DOI:
10.1088/1361-6668/aabf33 - 发表时间:
2018-05 - 期刊:
- 影响因子:3.6
- 作者:
Yanchang Zhu;Dongliang Wang;Chundong Zhu;He Huang;Zhongtang Xu;Shifa Liu;Zhe Cheng;Yanwei Ma - 通讯作者:
Yanwei Ma
Exponential stabilization of delayed recurrent neural networks: A state estimation based approach
延迟循环神经网络的指数稳定性:基于状态估计的方法
- DOI:
10.1016/j.neunet.2013.08.006 - 发表时间:
2013-12 - 期刊:
- 影响因子:7.8
- 作者:
He Huang;Tingwen Huang;Xiaoping Chen;Chunjiang Qian - 通讯作者:
Chunjiang Qian
He Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('He Huang', 18)}}的其他基金
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
- 批准号:
2306660 - 财政年份:2023
- 资助金额:
$ 87.94万 - 项目类别:
Standard Grant
Collaborative Research: HCC: Medium: Learning to coordinate between human and a robotic prosthesis for symbiotic locomotion
合作研究:HCC:中:学习协调人类和机器人假体之间的共生运动
- 批准号:
2211739 - 财政年份:2022
- 资助金额:
$ 87.94万 - 项目类别:
Standard Grant
CHS: Medium: A Bi-directional Neural Interface for Bionic Prosthetic Legs
CHS:中:仿生假肢的双向神经接口
- 批准号:
1954587 - 财政年份:2020
- 资助金额:
$ 87.94万 - 项目类别:
Standard Grant
Integrating Human Wearers' Perception and Cognition into Prosthesis Control Policy
将人类佩戴者的感知和认知纳入假肢控制政策
- 批准号:
1926998 - 财政年份:2019
- 资助金额:
$ 87.94万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Electromyography (EMG)-Based Assistive Human-Machine Interface Design: Cognitive Workload and Motor Skill Learning Assessment
CHS:媒介:协作研究:基于肌电图 (EMG) 的辅助人机界面设计:认知工作量和运动技能学习评估
- 批准号:
1856441 - 财政年份:2019
- 资助金额:
$ 87.94万 - 项目类别:
Standard Grant
Collaborative Research: Reinforcement learning based adaptive optimal control of powered knee prosthesis for human users in real life
协作研究:基于强化学习的现实生活中人类用户动力膝关节假体的自适应最优控制
- 批准号:
1808898 - 财政年份:2018
- 资助金额:
$ 87.94万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Novel Optimal Control for Co-Adaptation of Human and Powered Lower Limb Prosthesis
CHS:媒介:协作研究:人类和动力下肢假肢共同适应的新型最优控制
- 批准号:
1563454 - 财政年份:2016
- 资助金额:
$ 87.94万 - 项目类别:
Standard Grant
HCC: Medium: Collaborative Research: Neural Control of Powered Artificial Legs
HCC:媒介:合作研究:动力假腿的神经控制
- 批准号:
1302196 - 财政年份:2013
- 资助金额:
$ 87.94万 - 项目类别:
Continuing Grant
HCC: Medium: Collaborative Research: Neural Control of Powered Artificial Legs
HCC:媒介:合作研究:动力假腿的神经控制
- 批准号:
1361549 - 财政年份:2013
- 资助金额:
$ 87.94万 - 项目类别:
Continuing Grant
CAREER: Understanding and Analyzing User-Prosthesis Interaction for Designing a Volitional Controller for Powered Lower Limb Prostheses
职业:理解和分析用户假肢交互,以设计动力下肢假肢的意志控制器
- 批准号:
1406750 - 财政年份:2013
- 资助金额:
$ 87.94万 - 项目类别:
Continuing Grant
相似国自然基金
海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
- 批准号:82304658
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
novel_circ_001042/miR-298-5p/Capn1轴调节线粒体能量代谢在先天性肛门直肠畸形发生中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
- 批准号:82070530
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
- 批准号:
10748341 - 财政年份:2024
- 资助金额:
$ 87.94万 - 项目类别:
Impact of Improving Footwear Options for Women Veterans with Amputations
改善截肢女退伍军人鞋类选择的影响
- 批准号:
10641398 - 财政年份:2023
- 资助金额:
$ 87.94万 - 项目类别:
Improving prosthetic provision in rural communities: limb scanning with caregiver assistance
改善农村社区的假肢供应:在护理人员协助下进行肢体扫描
- 批准号:
10753426 - 财政年份:2023
- 资助金额:
$ 87.94万 - 项目类别:
STTR Phase I: A Novel Prescription Process that Customizes Prosthetic Feet for Individual Patients
STTR 第一阶段:为个体患者定制假足的新颖处方流程
- 批准号:
2233114 - 财政年份:2023
- 资助金额:
$ 87.94万 - 项目类别:
Standard Grant
Effect of Osseointegrated Prostheses on the Pathogenesis of Hip Osteoarthritis in Patients with Lower Limb Loss
骨整合假体对下肢丧失患者髋骨关节炎发病机制的影响
- 批准号:
10662142 - 财政年份:2023
- 资助金额:
$ 87.94万 - 项目类别: