Complexity of Disordered Systems
无序系统的复杂性
基本信息
- 批准号:1517864
- 负责人:
- 金额:$ 11.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the classic goals of probability theory is to understand how the interaction of small individuals (internet users, particles, investors) in seemingly random ways translates to novel behavior of the entire system. The goal of this proposal is to analyze such systems where the interactions have high-dimensional dependence structures and where the extremes (network hubs, low energy configurations, optimal trajectories) play a significant role. As well as being important to probability theory, the results obtained in this proposal will be relevant and applied to many branches of science, as most of the questions were introduced to understand the behavior of various optimization problems in physics, computer science, theoretical biology, and social networks. More specifically, the proposal involves projects on first-passage percolation (an example of fluid flow in a porous medium) and on mean field spin glass models (example of disordered magnets with frustrated interactions). The major questions are tied to the complexity of the models, that is, the presence of a large number of extremes and their location in space. In particular the proposer plans to investigate the role played by the functional order parameters in the Sherrington-Kirkpatrick, mixed p-spin and bipartite models and its relation with the number and location of extremes of the corresponding Hamiltonians. The proposal further addresses fundamental questions on growing interfaces and fluctuations of long chemical chains in a random potential (polymer models). Predictions from physics indicate that, in many of these models, fluctuations should scale sub-linearly with limiting laws that deviate from the standard Gaussian (for instance, which relate to the Tracy-Widom distribution from random matrix theory). This proposal continues and expands the research of the PI on these systems outside the scope of integrable models. In particular, this proposal aims to investigate the universal behavior of scaling exponents, the nature of the limit shape and the geometry of geodesics.
概率论的经典目标之一是理解小个体(互联网用户、粒子、投资者)以看似随机的方式相互作用如何转化为整个系统的新颖行为。该提案的目标是分析此类系统,其中相互作用具有高维依赖结构,并且极端情况(网络中心、低能量配置、最佳轨迹)发挥重要作用。除了对概率论很重要之外,该提案中获得的结果也将与许多科学分支相关并应用,因为大多数问题都是为了理解物理学、计算机科学、理论生物学、和社交网络。更具体地说,该提案涉及第一通道渗滤(多孔介质中流体流动的示例)和平均场自旋玻璃模型(相互作用受阻的无序磁体的示例)的项目。 主要问题与模型的复杂性有关,即大量极端情况的存在及其在空间中的位置。特别是,提议者计划研究 Sherrington-Kirkpatrick、混合 p-自旋和二部模型中函数序参数所起的作用及其与相应哈密顿量极值的数量和位置的关系。该提案进一步解决了随机势(聚合物模型)中长化学链不断增长的界面和波动的基本问题。物理学预测表明,在许多此类模型中,波动应按照偏离标准高斯分布的限制定律(例如,与随机矩阵理论中的 Tracy-Widom 分布相关)呈亚线性缩放。该提案继续并扩展了 PI 对这些系统的研究,超出了可积模型的范围。特别是,该提案旨在研究标度指数的普遍行为、极限形状的性质和测地线的几何形状。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Antonio Auffinger其他文献
Limiting geodesics for first-passage percolation on subsets of $mathbb{Z}^{2}$
$mathbb{Z}^{2}$ 子集上第一通道渗滤的限制测地线
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Antonio Auffinger;M. Damron;Jack Hanson - 通讯作者:
Jack Hanson
The Parisi Formula has a Unique Minimizer
Parisi 公式有一个独特的最小化器
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Antonio Auffinger;Wei - 通讯作者:
Wei
The SK model is Full-step Replica Symmetry Breaking at zero temperature
SK模型是零温度下全步复制对称破缺
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Antonio Auffinger;Wei;Q. Zeng - 通讯作者:
Q. Zeng
The scaling relation chi = 2 xi - 1 for directed polymers in a random environment
随机环境中定向聚合物的标度关系 chi = 2 xi - 1
- DOI:
- 发表时间:
2012-11-05 - 期刊:
- 影响因子:0
- 作者:
Antonio Auffinger;M. Damron - 通讯作者:
M. Damron
A simplified proof of the relation between scaling exponents in first-passage percolation
第一段渗透中缩放指数之间关系的简化证明
- DOI:
10.1214/13-aop854 - 发表时间:
2011-09-02 - 期刊:
- 影响因子:2.3
- 作者:
Antonio Auffinger;M. Damron - 通讯作者:
M. Damron
Antonio Auffinger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Antonio Auffinger', 18)}}的其他基金
Spin Glasses and Other Models of Disordered Media
自旋玻璃和其他无序介质模型
- 批准号:
2154076 - 财政年份:2022
- 资助金额:
$ 11.01万 - 项目类别:
Standard Grant
The 41st Stochastic Processes and Its Applications (SPA 2019)
第41届随机过程及其应用(SPA 2019)
- 批准号:
1906251 - 财政年份:2019
- 资助金额:
$ 11.01万 - 项目类别:
Standard Grant
CAREER: Complexity of Disordered Systems
职业:无序系统的复杂性
- 批准号:
1653552 - 财政年份:2017
- 资助金额:
$ 11.01万 - 项目类别:
Continuing Grant
相似国自然基金
解微分变分不等式的数值方法及应用
- 批准号:11071122
- 批准年份:2010
- 资助金额:33.0 万元
- 项目类别:面上项目
消除“车辆混乱”假设的交通流中观模型研究
- 批准号:71071024
- 批准年份:2010
- 资助金额:27.0 万元
- 项目类别:面上项目
6类常用藏药材混乱品种的分子鉴定
- 批准号:30560176
- 批准年份:2005
- 资助金额:23.0 万元
- 项目类别:地区科学基金项目
建立南方常见中草药混乱品种活标本区的研究*5
- 批准号:38960003
- 批准年份:1989
- 资助金额:2.5 万元
- 项目类别:地区科学基金项目
相似海外基金
Dynamics of Nonlinear and Disordered Systems
非线性和无序系统的动力学
- 批准号:
2350356 - 财政年份:2024
- 资助金额:
$ 11.01万 - 项目类别:
Continuing Grant
Structure and Statistics of Disordered Systems
无序系统的结构和统计
- 批准号:
2246616 - 财政年份:2023
- 资助金额:
$ 11.01万 - 项目类别:
Standard Grant
Structure and Statistics of Disordered Systems
无序系统的结构和统计
- 批准号:
2412473 - 财政年份:2023
- 资助金额:
$ 11.01万 - 项目类别:
Standard Grant
Novel measures of thermalization and time-evolution of strongly correlated, disordered, and topological systems by nonlinear THz spectroscopy
通过非线性太赫兹光谱测量强相关、无序和拓扑系统的热化和时间演化的新方法
- 批准号:
2226666 - 财政年份:2023
- 资助金额:
$ 11.01万 - 项目类别:
Standard Grant
Dynamical and Spatial Asymptotics of Large Disordered Systems
大型无序系统的动力学和空间渐进
- 批准号:
2246664 - 财政年份:2023
- 资助金额:
$ 11.01万 - 项目类别:
Standard Grant