Bilateral BBSRC-NSF/BIO: Asymmetric division and the temporal dynamics of cell motility
双边 BBSRC-NSF/BIO:不对称分裂和细胞运动的时间动态
基本信息
- 批准号:1517390
- 负责人:
- 金额:$ 38.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2017-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This collaborative project between researchers in the US (Beth Israel Deaconess Medical Center) and the UK (University of Manchester) aims to define the fundamental mechanisms controlling cell migration during organ development. In growing tissues, cells usually divide symmetrically to produce two identical daughter cells. However, in some instances cell divisions are asymmetric and give rise to intrinsically distinct daughters that have different characteristics including the ability to move (or motility). This project will explore the molecular and cellular basis of post-cell division asymmetry in cell motility and define the functional role of asymmetric divisions in the control of cell migration during tissue growth. Not only will this research generate freely available novel computational methods and analysis tools suitable for a wide array of applications, the findings of this work will have wide-reaching implications for understanding the control of cell migration across a plethora of cellular systems and organisms. Through its broader impacts, the project will additionally expose undergraduate and high school students (with emphasis on recruiting underrepresented groups) to integrated cross-disciplinary computational / experimental scientific approaches and provide hands-on experience of international collaborative research techniques upon the creation of several new, targeted, interactive Global Interface Science (GIS) workshops. Moreover, guidance on implementing similar GIS workshops anywhere worldwide will be widely disseminated via online media. Asymmetric cell division (ACD) specifies differential daughter cell fates in many systems, but has never before been implicated in determining the temporal dynamics of cell motility. This project will define how ACD acts as a novel symmetry-breaking mechanism to ensure daughter cells acquire distinct motilities during tissue growth. An integrated in silico and in vivo approach will be taken, innovating a novel multiscale hybrid, spatiotemporal agent-based model (ABM) that will inform single-cell live imaging experiments of endothelial cells in zebrafish embryos. These studies will probe ACD in motile cells, validate model predictions and altogether elucidate a previously unexplored role for mitosis in the control of migration. In particular, the interplay of ACD with cell signaling, geometry and mechanical motility cues across different scales, from the molecular to the cellular will be investigated through the following tasks: A) develop new modeling methodologies to investigate the role of localized intracellular dynamics in the establishment of asymmetric post-mitotic motility and functionally validate model predictions at sub-cellular resolution in vivo; B) Predict the effects of ACD-driven differences in cell architecture on motility dynamics in silico alongside quantification of dynamic alterations in cell architecture occurring during division in vivo; C) quantify pre- and post-mitotic fluctuations in cell tension at single-cell resolution in vivo and define the interplay of cell tension with the induction of ACD and differential motility in silico and in vivo. The products of this research will include novel computational ABM models and image analysis software, which will uniquely enable studies of key aspects of cell migration and will be made freely available to the wider scientific community. In additional broader impacts, the PIs will organize international workshops to provide a platform for promoting the widespread use of similar integrated in silico / in vivo approaches in studies of tissue morphogenesis across diverse cellular systems and organisms.This collaborative US/UK project is supported by the US National Science Foundation and the UK Biotechnology and Biological Sciences Research Council. Within NSF, the award is cofunded by the Division of Molecular And Cellular Biosciences and the Division of Chemical, Bioengineering, Environmental and Transport Systems.
美国(贝斯以色列女执事医疗中心)和英国(曼彻斯特大学)研究人员之间的合作项目旨在定义器官发育过程中控制细胞迁移的基本机制。在生长的组织中,细胞通常对称分裂,产生两个相同的子细胞。然而,在某些情况下,细胞分裂是不对称的,并产生本质上不同的子细胞,这些子细胞具有不同的特征,包括移动(或运动)的能力。 该项目将探索细胞分裂后细胞运动不对称的分子和细胞基础,并定义不对称分裂在组织生长过程中细胞迁移控制中的功能作用。这项研究不仅将产生适合广泛应用的免费新型计算方法和分析工具,而且这项工作的发现将对理解细胞在众多细胞系统和生物体中迁移的控制产生广泛的影响。通过其更广泛的影响,该项目还将让本科生和高中生(重点是招募代表性不足的群体)接触综合的跨学科计算/实验科学方法,并在创建几个新的项目时提供国际合作研究技术的实践经验。 、有针对性的交互式全球界面科学 (GIS) 研讨会。此外,关于在世界各地举办类似 GIS 研讨会的指南将通过在线媒体广泛传播。不对称细胞分裂(ACD)指定了许多系统中不同的子细胞命运,但以前从未涉及确定细胞运动的时间动态。该项目将定义 ACD 如何作为一种新颖的对称性破缺机制来确保子细胞在组织生长过程中获得不同的运动能力。将采用计算机和体内集成方法,创新一种新型多尺度混合、基于时空代理的模型(ABM),该模型将为斑马鱼胚胎中内皮细胞的单细胞活体成像实验提供信息。这些研究将探测运动细胞中的 ACD,验证模型预测,并共同阐明有丝分裂在控制迁移中先前未探索的作用。特别是,ACD 与细胞信号传导、几何结构和机械运动线索在不同尺度(从分子到细胞)之间的相互作用将通过以下任务进行研究:A)开发新的建模方法来研究局部细胞内动力学在建立不对称的有丝分裂后运动,并在体内以亚细胞分辨率功能验证模型预测; B) 预测 ACD 驱动的细胞结构差异对计算机运动动力学的影响,同时量化体内分裂过程中发生的细胞结构动态变化; C) 在体内以单细胞分辨率量化细胞张力的有丝分裂前和后波动,并在计算机和体内定义细胞张力与 ACD 诱导和差异运动的相互作用。这项研究的产品将包括新型计算 ABM 模型和图像分析软件,这将独特地支持细胞迁移关键方面的研究,并将免费提供给更广泛的科学界。在更广泛的影响中,PI 将组织国际研讨会,以提供一个平台,促进在不同细胞系统和生物体的组织形态发生研究中广泛使用类似的集成计算机/体内方法。该美国/英国合作项目得到了以下机构的支持:美国国家科学基金会和英国生物技术和生物科学研究委员会。 在 NSF 内部,该奖项由分子和细胞生物科学部以及化学、生物工程、环境和运输系统部共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katie Bentley其他文献
Formin-mediated actin polymerization at endothelial junctions is required for vessel lumen formation and stabilization.
内皮连接处福尔明介导的肌动蛋白聚合是血管腔形成和稳定所必需的。
- DOI:
10.1016/j.devcel.2014.11.017 - 发表时间:
2015-01-12 - 期刊:
- 影响因子:11.8
- 作者:
Li;Véronique Gebala;Katie Bentley;Andrew O. Philippides;A. Wacker;T. Mathivet;L. Sauteur;F. Stanchi;H. Belting;M. Affolter;H. Gerhardt - 通讯作者:
H. Gerhardt
Engineered patterns of Notch ligands Jag1 and Dll4 elicit differential spatial control of endothelial sprouting
Notch 配体 Jag1 和 Dll4 的工程模式引发内皮出芽的差异空间控制
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:5.8
- 作者:
L. A. Tiemeijer;T. Ristori;Oscar Stassen;Jaakko J. Ahlberg;Jonne J.J. de Bijl;Christopher S. Chen;Katie Bentley;C. Bouten;C. Sahlgren - 通讯作者:
C. Sahlgren
Blocking endothelial apoptosis revascularizes the retina in a model of ischemic retinopathy
阻断内皮细胞凋亡可使缺血性视网膜病变模型中的视网膜血运重建
- DOI:
10.1172/jci127668 - 发表时间:
2020-05-19 - 期刊:
- 影响因子:0
- 作者:
Zoe L. Grant;L. Whitehead;Vickie H. Y. Wong;Zheng He;Richard Y Yan;Abigail R Miles;A. Benest;D. Bates;Claudia Prahst;Katie Bentley;B. Bui;R. C. Symons;L. Coultas - 通讯作者:
L. Coultas
Defective endothelial cell migration in the absence of Cdc42 leads to capillary-venous malformations
Cdc42缺失时内皮细胞迁移缺陷会导致毛细血管-静脉畸形
- DOI:
10.1242/dev.161182 - 发表时间:
2018-07-01 - 期刊:
- 影响因子:4.6
- 作者:
B. Lavina;Marco Castro;C. Niaudet;B. Cruys;A. Álvarez;P. Carmeliet;Katie Bentley;C. Brakebusch;C. Betsholtz;K. Gaengel - 通讯作者:
K. Gaengel
Adaptive behaviour through morphological plasticity in natural and artificial systems
自然和人工系统中形态可塑性的适应性行为
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
Katie Bentley - 通讯作者:
Katie Bentley
Katie Bentley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katie Bentley', 18)}}的其他基金
Bilateral BBSRC-NSF/BIO: Asymmetric division and the temporal dynamics of cell motility
双边 BBSRC-NSF/BIO:不对称分裂和细胞运动的时间动态
- 批准号:
1758081 - 财政年份:2017
- 资助金额:
$ 38.29万 - 项目类别:
Continuing Grant
相似海外基金
Bilateral BBSRC-NSF/BIO: CIBR: Structural modeling of interactome to assess phenotypic effects of genetic variation.
双边 BBSRC-NSF/BIO:CIBR:相互作用组的结构模型,用于评估遗传变异的表型效应。
- 批准号:
1917263 - 财政年份:2019
- 资助金额:
$ 38.29万 - 项目类别:
Standard Grant
Bilateral BBSRC-NSF/BIO: Bayesian Quantitative Proteomics
双边 BBSRC-NSF/BIO:贝叶斯定量蛋白质组学
- 批准号:
2016487 - 财政年份:2019
- 资助金额:
$ 38.29万 - 项目类别:
Standard Grant
Bilateral BBSRC-NSF/BIO: Bayesian Quantitative Proteomics
双边 BBSRC-NSF/BIO:贝叶斯定量蛋白质组学
- 批准号:
2016487 - 财政年份:2019
- 资助金额:
$ 38.29万 - 项目类别:
Standard Grant
Bilateral BBSRC-NSF/BIO Collaborative Research: ABI Development: A Critical Assessment of Protein Function Annotation
BBSRC-NSF/BIO 双边合作研究:ABI 开发:蛋白质功能注释的批判性评估
- 批准号:
1854685 - 财政年份:2018
- 资助金额:
$ 38.29万 - 项目类别:
Standard Grant
Bilateral NSF/BIO-BBSRC:A Metagenomics Exchange - enriching analysis by synergistic harmonisation of MG-RAST and the EBI Metagenomics Portal
双边 NSF/BIO-BBSRC:宏基因组学交流 - 通过 MG-RAST 和 EBI 宏基因组学门户的协同协调丰富分析
- 批准号:
BB/N018354/1 - 财政年份:2017
- 资助金额:
$ 38.29万 - 项目类别:
Research Grant