Petascale Adaptive Mesh Simulations of Milky Way-type Galaxies and Their Environments
银河系及其环境的千万亿次自适应网格模拟
基本信息
- 批准号:1514580
- 负责人:
- 金额:$ 3.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project seeks answers to several pressing questions about the formation and evolution of galaxies. It does so by using the Blue Waters supercomputer to perform a suite of sophisticated supercomputer simulations. The investigators will address such questions as: (i) How did the earliest progenitors of the Milky Way galaxy form, and where can we find their stellar remnants today? (ii) How does the ionizing radiation produced by massive stars escape from galaxies, and how does it affect the properties of neighboring galaxies? (iii) How does the gas that is critical for star formation get from the cosmic web into the central regions of galaxies, and how is gas returned to the intergalactic medium? (iv) How are magnetic fields seeded and amplified in galaxies, and how are they ejected into (or amplified in) the intergalactic medium?The team includes experts in astrophysics as well as in high performance computing, and is united in the use of a sophisticated numerical tool (the Enzo AMR code) that has already demonstrated its performance on Blue Waters. The team will work with observational astronomer collaborators to apply these simulations to the interpretation of measurements of both local and distant galaxies from current astronomical surveys, and to motivate future observations by the Large Synoptic Survey Telescope and the James Webb Space Telescope.The proposed work promises to have significant impact on scientists in training, who will learn to use cutting-edge numerical tools at the largest possible scale. The project will involve undergraduate students at Michigan State University (through MSU?s REU program, which targets women and under-represented minorities) and postdoctoral researchers in the research efforts. Scientific results from this program will be visualized by staff at the National Center for Supercomputing Applications, and will be disseminated to the public via pre-existing collaborations with planetaria and museums, and via the Internet. In addition, these visualizations will be used as part of outreach talks given by members of this project. Finally, the simulation data produced as a result of this project will be used in computational science courses at Michigan State University, where it will be used to train students in scientific visualization and data analysis techniques. The resulting curricular materials will be made available to the public via the World Wide Web.The specific research methods used in this project include the creation of an extensive library of simulated Milky Way-like galaxies and their environments that can be used to explore a wide range of observable astrophysical phenomena. This will be the first study to perform cosmological simulations of galaxy formation and evolution that include self-consistent treatments of radiation transport and/or magnetohydrodynamics for a statistically significant number of galaxies, and to apply these calculations to the interpretation of recent observations relating to the intergalactic and circumgalactic medium, galactic and extragalactic magnetic fields, and high redshift galaxy formation. Furthermore, the simulation data produced during the course of this project, as well as a wide range of data products, will be made publicly available via the nascent National Data Service. This data will be usable by the astrophysical research community, and will enable researchers to address a much broader range of questions regarding galaxy formation and evolution than can be done as a part of this project alone, thus leveraging the computational resources available on Blue Waters.
该项目寻求有关星系形成和演化的几个紧迫问题的答案。它通过使用 Blue Waters 超级计算机执行一套复杂的超级计算机模拟来实现这一点。研究人员将解决以下问题:(i)银河系最早的前身是如何形成的,以及我们今天在哪里可以找到它们的恒星遗迹? (ii) 大质量恒星产生的电离辐射如何逃离星系,以及它如何影响邻近星系的特性? (iii)对于恒星形成至关重要的气体如何从宇宙网进入星系的中心区域,以及气体如何返回星系际介质? (iv) 磁场是如何在星系中播种和放大的,以及它们是如何被喷射到(或在)星系际介质中放大的?该团队包括天体物理学和高性能计算方面的专家,并团结起来使用复杂的数值工具(Enzo AMR 代码)已在 Blue Waters 上展示了其性能。该团队将与观测天文学家合作者合作,将这些模拟应用于解释当前天文巡天对本地和遥远星系的测量结果,并激发大型综合巡天望远镜和詹姆斯韦伯太空望远镜的未来观测。拟议的工作承诺对接受培训的科学家产生重大影响,他们将学习在尽可能大的范围内使用尖端的数值工具。该项目将让密歇根州立大学的本科生(通过密歇根州立大学的 REU 计划,针对女性和代表性不足的少数族裔)和博士后研究人员参与研究工作。该计划的科学成果将由国家超级计算应用中心的工作人员进行可视化,并将通过与天文馆和博物馆的现有合作以及互联网向公众传播。此外,这些可视化将用作该项目成员进行的外展演讲的一部分。最后,该项目产生的模拟数据将用于密歇根州立大学的计算科学课程,用于培训学生科学可视化和数据分析技术。由此产生的课程材料将通过万维网向公众提供。该项目使用的具体研究方法包括创建一个庞大的模拟类银河系星系及其环境库,可用于探索更广泛的领域。可观测的天体物理现象的范围。这将是第一项对星系形成和演化进行宇宙学模拟的研究,其中包括对统计上显着数量的星系进行辐射传输和/或磁流体动力学的自洽处理,并将这些计算应用于解释与星系际和环星系介质、星系和河外磁场以及高红移星系的形成。此外,该项目过程中产生的模拟数据以及各种数据产品将通过新生的国家数据服务公开。这些数据将可供天体物理学研究界使用,并使研究人员能够解决有关星系形成和演化的更广泛的问题,而不仅仅是该项目的一部分,从而利用 Blue Waters 上可用的计算资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian O'Shea其他文献
A review of Huntington's disease.
亨廷顿舞蹈症综述。
- DOI:
10.3109/13651509709024715 - 发表时间:
1997 - 期刊:
- 影响因子:3
- 作者:
Brian O'Shea - 通讯作者:
Brian O'Shea
The Paris of Joyce & Beckett: A Tourist Guide: "Ulysses" Centenary Supplement
乔伊斯的巴黎
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Brian O'Shea;Sean Donlon eds.;Eishiro Ito; et al. - 通讯作者:
et al.
The Paris of Joyce & Beckett: A Tourist Guide: "Ulysses" Centenary Supplement
乔伊斯的巴黎
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Brian O'Shea;Sean Donlon eds.;Eishiro Ito; et al. - 通讯作者:
et al.
Brian O'Shea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian O'Shea', 18)}}的其他基金
CC* Compute: The MSU Data Machine - a high-memory, GPU-enabled compute cluster for data-intensive and AI applications
CC* 计算:MSU 数据机 - 一个高内存、支持 GPU 的计算集群,适用于数据密集型和人工智能应用程序
- 批准号:
2200792 - 财政年份:2022
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
CC* Networking Infrastructure: A Science DMZ For Quantitative Biology and Precision Agriculture
CC* 网络基础设施:定量生物学和精准农业的科学 DMZ
- 批准号:
2018432 - 财政年份:2020
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
REU Site: iCER ACRES: iCER Advanced Computational Research Experience for Students
REU 网站:iCER ACRES:为学生提供 iCER 高级计算研究体验
- 批准号:
1949912 - 财政年份:2020
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
Travel grant for LRAC proposal AST20004: The role of low collisionality in compressible, magnetized turbulence
LRAC 提案 AST20004 的旅费补助:低碰撞性在可压缩、磁化湍流中的作用
- 批准号:
2031219 - 财政年份:2020
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
Collaborative Research: The Spatially Resolved Circumgalactic Medium of Galaxies
合作研究:空间分辨的环绕星系介质
- 批准号:
1908109 - 财政年份:2019
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
Collaborative Research:Framework:Software:NSCI:Enzo for the Exascale Era (Enzo-E)
合作研究:框架:软件:NSCI:Exascale时代的Enzo(Enzo-E)
- 批准号:
1835426 - 财政年份:2018
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
Probing the Fossils of the Local Group using Petascale Adaptive Mesh Galaxy Simulations
使用 Petascale 自适应网格星系模拟探测本地群的化石
- 批准号:
1810584 - 财政年份:2018
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
Collaborative research: Multiscale physics and feedback in real and simulated circumgalactic gas over cosmic time
合作研究:宇宙时间内真实和模拟的环绕星系气体的多尺度物理和反馈
- 批准号:
1514700 - 财政年份:2015
- 资助金额:
$ 3.15万 - 项目类别:
Continuing Grant
Annual National Science Foundation Astronomy and Astrophysics Postdoctoral Fellows Symposium
年度国家科学基金会天文学和天体物理学博士后研讨会
- 批准号:
1612964 - 财政年份:2015
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
Collaborative Research: Software Institute for Abstractions and Methodologies for HPC Simulation Codes on Future Architectures
合作研究:未来架构 HPC 模拟代码抽象和方法学软件研究所
- 批准号:
1228667 - 财政年份:2012
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
相似国自然基金
面向细胞群跟踪的深度活动网模型及跨域自适应性算法研究
- 批准号:62362010
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
构网型变流器集群精准建模分析和自适应稳定控制
- 批准号:52377192
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于模型自适应辨识的可变结构交流微网群协同趋优控制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于互动强化学习的弱信息互联变拓扑微网群分布式控制自适应趋优研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
多元异构直流微网暂态稳定分析及其稳定边界自适应控制研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构化网格技术
- 批准号:
2348394 - 财政年份:2024
- 资助金额:
$ 3.15万 - 项目类别:
Standard Grant
Self-Adaptive, Unstructured Mesh, NURBS Enhanced, Polyhedral Schemes, with Hybrid Multicore CPU and Manycore GPU Solution Algorithms, for Nuclear Reac
适用于核反应堆的自适应、非结构化网格、NURBS 增强型、多面体方案,具有混合多核 CPU 和众核 GPU 解决方案算法
- 批准号:
2738301 - 财政年份:2022
- 资助金额:
$ 3.15万 - 项目类别:
Studentship
Adaptive Mesh Generation for Complex Geometry
复杂几何体的自适应网格生成
- 批准号:
542571-2019 - 财政年份:2019
- 资助金额:
$ 3.15万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Long term projection of storm surge inundation using upscaling and adaptive mesh refinement
使用放大和自适应网格细化对风暴潮淹没进行长期预测
- 批准号:
19J22429 - 财政年份:2019
- 资助金额:
$ 3.15万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Adaptive Mesh Generation for Complex Geometry
复杂几何体的自适应网格生成
- 批准号:
542571-2019 - 财政年份:2019
- 资助金额:
$ 3.15万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's