Collaborative Research: Nanostructured Conductive Tin Oxide for High-Efficiency Light Trapping in Thin Films and Photonic Devices

合作研究:用于薄膜和光子器件中高效光捕获的纳米结构导电氧化锡

基本信息

  • 批准号:
    1509272
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2019-06-30
  • 项目状态:
    已结题

项目摘要

This project is jointly funded by the Electronic and Photonic Materials Program (EPM) in the Division of Materials Research (DMR), and by the Electronics, Photonics, and Magnetic Devices Program (EPMD) in the Division of Electrical, Communications and Cyber Systems (ECCS). Nontechnical Description: This project investigates nanostructured conductive tin oxide as a self-assembled electrode for high-efficiency light trapping in photonic devices based on thin films and two-dimensional (2D) materials. These nanostructures scatter the incident light into the plane of the active absorber materials, thereby "trapping" the light for strongly enhanced optical absorption in ultrathin absorbers. This technology enables a drastic reduction in materials consumption and cost compared to wafer-based optoelectronic devices. It has broad potential applications from infrared sensing/imaging to energy harvesting, including direct conversion of heat into electricity. The light trapping in ultrathin absorbers also enables a new group of flexible, high-efficiency photonic devices that can be installed on curved surfaces. The project provides a broad range of cutting-edge research experiences for graduate and undergraduate students. The team also participates in the "sharing science workshop and practicum" at the Museum of Science in Boston to make demos on the light trapping effect that allows visitors to observe an atomically thin graphene layer with naked eyes. The PI (Liu) integrates the new concepts generated from this research project into the Summer Engineering Workshop at Dartmouth College for high-school juniors and seniors. The Co-PI (Kong) participates in the MIT Edgerton Center to inspire K-12 students using the nanostructured materials produced in the research.Technical Description: This project studies high-efficiency, low-loss light trapping in photonic devices. The goal is to investigate nanostructured conductive tin oxide SnOx (x2) as a low-temperature (250 degrees Celsius) self-assembled electrode for efficient light trapping in thin-film and 2D-materials based photonic devices, thereby greatly enhancing their quantum efficiencies. Due to the non-stoichiometry, the excess Sn segregates upon annealing and induces nanobrick/nanoneedle formation. In order to achieve high light trapping efficiency, the team studies the fundamentals of the nanostructure formation, ambipolar electrical conduction, and nanoscale optical coupling between SnOx and thin film/2D absorbers. Based on the new knowledge gained through this project, the device structure and fabrication process can be optimized for different applications. Two examples are (a) SnOx enhanced light trapping in Ge and GeSn thin films for thermo photovoltaic cells and infrared sensors, and (b) SnOx/2D material heterostructures for photonic devices. The research can potentially lead to a new class of low-loss, nanostructured conductive oxides for high efficiency light trapping in thin active absorbers with thicknesses ranging from a single atomic layer to a few micrometers. Compared to conventional surface-textured transparent conductive oxides, this new technology enhances light trapping efficiency for ultrathin absorbers and minimizes the surface leakage current simultaneously.
该项目由材料研究部(DMR)的电子和光子材料计划(EPM)以及电气、通信和网络系统部的电子、光子和磁性器件计划(EPMD)共同资助(电子控制系统)。非技术描述:该项目研究纳米结构导电氧化锡作为自组装电极,用于基于薄膜和二维 (2D) 材料的光子器件中的高效光捕获。这些纳米结构将入射光散射到活性吸收体材料的平面中,从而“捕获”光,从而大大增强超薄吸收体中的光学吸收。与基于晶圆的光电器件相比,该技术可大幅降低材料消耗和成本。它具有从红外传感/成像到能量收集的广泛潜在应用,包括将热能直接转化为电能。超薄吸收体中的光捕获还使得一组新的灵活、高效的光子器件能够安装在曲面上。该项目为研究生和本科生提供广泛的前沿研究经验。该团队还参加了波士顿科学博物馆的“共享科学研讨会和实习”,演示了光捕获效应,使参观者可以用肉眼观察原子薄的石墨烯层。 PI(刘)将本研究项目产生的新概念整合到达特茅斯学院为高中三年级和四年级学生举办的夏季工程研讨会中。 Co-PI (Kong) 参与麻省理工学院埃哲顿中心,激励 K-12 学生使用研究中产生的纳米结构材料。技术描述:该项目研究光子器件中的高效、低损耗光捕获。目标是研究纳米结构导电氧化锡 SnOx (x2) 作为低温(250 摄氏度)自组装电极,用于在基于薄膜和 2D 材料的光子器件中有效捕获光,从而大大提高其量子效率。由于非化学计量,过量的锡在退火时分离并诱导纳米砖/纳米针的形成。为了实现高光捕获效率,该团队研究了纳米结构形成、双极导电以及 SnOx 和薄膜/2D 吸收体之间的纳米级光学耦合的基础原理。基于通过该项目获得的新知识,可以针对不同的应用来优化器件结构和制造工艺。两个例子是 (a) 用于热光伏电池和红外传感器的 Ge 和 GeSn 薄膜中的 SnOx 增强光捕获,以及 (b) 用于光子器件的 SnOx/2D 材料异质结构。这项研究可能会产生一类新型低损耗纳米结构导电氧化物,用于在厚度从单原子层到几微米的薄型活性吸收体中高效捕获光。与传统的表面纹理透明导电氧化物相比,这项新技术提高了超薄吸收体的光捕获效率,同时最大限度地减少了表面漏电流。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Color Contrast of Single-Layer Graphene under White Light Illumination Induced by Broadband Photon Management
宽带光子管理引起的白光照明下单层石墨烯的颜色对比度
  • DOI:
    10.1021/acsami.9b16149
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Yu, Xiaobai;Fu, Sidan;Song, Yi;Wang, Haozhe;Wang, Xiaoxin;Kong, Jing;Liu, Jifeng
  • 通讯作者:
    Liu, Jifeng
An optical slot-antenna-coupled cavity (SAC) framework towards tunable free-space graphene photonic surfaces
面向可调谐自由空间石墨烯光子表面的光学缝隙天线耦合腔(SAC)框架
  • DOI:
    10.1007/s12274-020-3184-z
  • 发表时间:
    2020-11-07
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Sidan Fu;Xiaoxin Wang;Haozhe Wang;Xiaoxue Gao;K. Broderick;J. Kong;Jifeng Liu
  • 通讯作者:
    Jifeng Liu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jifeng Liu其他文献

Erratum: “The Flare Catalog and the Flare Activity in the Kepler Mission” (2019, ApJS, 241, 29)
勘误表:“开普勒任务中的耀斑目录和耀斑活动”(2019, ApJS, 241, 29)
Design of nanophotonic, hot-electron solar-blind ultraviolet detectors with a metal-oxide-semiconductor structure
金属氧化物半导体结构纳米光子热电子日盲紫外探测器的设计
  • DOI:
    10.1088/2040-8978/16/12/125010
  • 发表时间:
    2014-12-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Zhiyuan Wang;Xiaoxin Wang;Jifeng Liu
  • 通讯作者:
    Jifeng Liu
Direct Bandgap Electroluminescence from SiGeSn/GeSn Double-Heterostructure Monolithically Grown on Si
SiGeSn/GeSn 双异质结单片生长的直接带隙电致发光
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yiyin Zhou;Yuanhao Miao;Solomon Ojo;G. Abernathy;W. Du;G. Sun;R. Soref;Jifeng Liu;Yong;M. Mortazavi;Baohua Li;Shui
  • 通讯作者:
    Shui
Catch Me If You Can: Demonstrating Laser Tethering with Highly Mobile Targets
如果可以的话来抓住我:演示与高度移动目标的激光网络共享
Should Contralateral Nodules Be an Indication of Total or Completion Thyroidectomy for Patients With Unilateral Papillary Thyroid Carcinoma?
对侧结节是否应该成为单侧甲状腺乳头状癌患者进行全甲状腺切除术或完全性甲状腺切除术的指征?
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Tengfei Ma;Haiyang Wang;Jifeng Liu;J. Zou;Shixi Liu
  • 通讯作者:
    Shixi Liu

Jifeng Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jifeng Liu', 18)}}的其他基金

Collaborative Research: FuSe:Substrate-inverted Multi-Material Integration Technology
合作研究:FuSe:衬底倒置多材料集成技术
  • 批准号:
    2328841
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: FuSe:Substrate-inverted Multi-Material Integration Technology
合作研究:FuSe:衬底倒置多材料集成技术
  • 批准号:
    2328841
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
PFI:AIR - TT: Hot Electron Nanophotonic UV/IR CMOS Quanta Image Sensors and Photodetectors
PFI:AIR - TT:热电子纳米光子紫外/红外 CMOS 量子图像传感器和光电探测器
  • 批准号:
    1700909
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Low-Temperature Growth of High Crystallinity GeSn on Amorphous Materials for Advanced Optoelectronics
职业:用于先进光电子学的非晶材料上高结晶度 GeSn 的低温生长
  • 批准号:
    1255066
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Nanophotonic MOS Solar-Blind Avalanche UV Detectors
纳米光子 MOS 日盲雪崩紫外线探测器
  • 批准号:
    1231701
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

新型抗菌蛋白CB6-C结构优化及其抗MRSA纳米给药系统研究
  • 批准号:
    32302932
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于纳米孔多维度数据的恶性胶质瘤基因组结构变异异质性及调控网络研究
  • 批准号:
    32300522
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
可电离脂质化学结构影响mRNA脂质纳米粒体内命运的机制研究
  • 批准号:
    32301174
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
石墨烯立体多孔薄膜诱导合成非对称结构铂基纳米晶超低铂载量质子交换膜燃料电池电极体系的研究
  • 批准号:
    22379031
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于纳米晶限域自组装构建布利冈结构牙本质仿生矿化层的机制研究
  • 批准号:
    82371004
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RUI: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:RUI:使用分层纳米结构动力系统进行二维波浪工程
  • 批准号:
    2337506
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Wave Engineering in 2D Using Hierarchical Nanostructured Dynamical Systems
合作研究:使用分层纳米结构动力系统进行二维波动工程
  • 批准号:
    2337507
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Engineering Gradient Nanostructured Metals by Multi-Pass Plastic Wave Deformation
合作研究:通过多通道塑性波变形工程梯度纳米结构金属
  • 批准号:
    2102030
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Engineering Gradient Nanostructured Metals by Multi-Pass Plastic Wave Deformation
合作研究:通过多通道塑性波变形工程梯度纳米结构金属
  • 批准号:
    2102093
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Polar-Polyolefin Block Copolymers via MILRad Functionalization: A Platform for Amphiphilic Nanostructured Material Synthesis
合作研究:通过 MILRad 功能化制备极性聚烯烃嵌段共聚物:两亲性纳米结构材料合成平台
  • 批准号:
    2108901
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了