SusChEM: Rational Design and Synthesis of Stable Strain- and Defect-Rich Cu/Ceramic Nanocomposites for Efficient CO2 Reduction
SusChEM:合理设计和合成稳定的应变和缺陷丰富的铜/陶瓷纳米复合材料,以有效减少二氧化碳排放
基本信息
- 批准号:1508611
- 负责人:
- 金额:$ 35.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL SUMMARY: In this project, supported by the Ceramics Program in the Division of Materials Research, Professor Tewodros Asefa is developing novel nanoparticles containing defect- and strain-rich copper nanocrystals sandwiched between two metal oxides. These materials are being used to investigate the stability and catalytic activity of copper nanocrystals for the conversion of carbon dioxide (a greenhouse gas) to methanol (a synthetic fuel and a commodity chemical). While defect- and strain-rich copper nanocrystals have high catalytic activity for this chemical conversion, these very sites are also unfortunately unstable, and thus can easily lose their activity. This problem is overcome by the design of nanomaterials that comprise metal oxide cores and porous metal oxide shells around the strain- and defect-rich copper nanocrystals. This unique structure allows the nanocrystals to retain their catalytically super-active sites, while remaining stable and allowing for the systematic investigation of the interplay between the structures and catalytic properties of copper nanocrystals under high temperature (the condition used for converting carbon dioxide to methanol). State-of-the-art high-resolution neutron scattering techniques at the Center for High Resolution Neutron Scattering (CHRNS) in the National Institute of Standards and Technology (NIST) are being used to decipher the defects and strains on the nanoparticles and any changes that they may undergo during catalysis. The instrumentation at CHRNS allows for various unique characterizations of the structure and dynamics of the materials being developed. TECHNICAL DETAILS: While defect and strained sites on copper nanocrystals have been recently found to have high catalytic activity for high temperature chemical conversion of carbon dioxide to methanol, these very sites are also unfortunately thermodynamically unstable, and thus can easily undergo sintering and deactivation under these conditions. Key features of the research are the designing of core-shell nanoparticles containing stable and highly active, defect- and strain-rich copper nanocrystals sandwiched between metal oxide cores and porous metal oxide shells, and using the resulting nanocatalysts to provide a thorough understanding of the structure-property relationships of copper and other related metallic nanomaterials under high temperature catalytic conditions. The synthesis of such copper nanocrystals is carried out by a method called controlled ligand-assisted etching. The research ultimately uncovers key structural factors that need to be tailored in copper and other related metallic nanomaterials for the efficient catalysis of various reactions, including the conversion of carbon dioxide to methanol, or a greenhouse gas to a synthetic fuel or a commodity chemical. Additionally, the project provides training of a graduate student and three or more undergraduate students, including those from groups historically underrepresented in science and engineering. The students participating in this research gain interdisciplinary, hands-on training with a variety of materials synthetic methods, catalysis, and materials characterization using the infrastructure available at the Rutgers Laboratory for Surface Modification, as well as that available at NIST. Furthermore, the results from the research will be incorporated into graduate course offerings that address materials engineering for sustainable and renewable energy applications.
非技术摘要:在该项目中,在材料研究部陶瓷项目的支持下,Tewodros Asefa 教授正在开发新型纳米颗粒,其中含有夹在两种金属氧化物之间的富含缺陷和应变的铜纳米晶体。这些材料用于研究铜纳米晶体将二氧化碳(一种温室气体)转化为甲醇(一种合成燃料和商品化学品)的稳定性和催化活性。虽然富含缺陷和应变的铜纳米晶体对于这种化学转化具有很高的催化活性,但不幸的是,这些位点也不稳定,因此很容易失去活性。这个问题通过纳米材料的设计得到了克服,该纳米材料包含金属氧化物核和围绕富含应变和缺陷的铜纳米晶体的多孔金属氧化物壳。这种独特的结构使纳米晶体能够保留其催化超活性位点,同时保持稳定,并允许系统研究高温(用于将二氧化碳转化为甲醇的条件)下铜纳米晶体的结构和催化性能之间的相互作用。 。美国国家标准与技术研究院 (NIST) 高分辨率中子散射中心 (CHRNS) 正在使用最先进的高分辨率中子散射技术来破译纳米粒子上的缺陷和应变以及任何变化它们在催化过程中可能会经历。 CHRNS 的仪器可以对正在开发的材料的结构和动力学进行各种独特的表征。技术细节:虽然最近发现铜纳米晶体上的缺陷和应变位点对于二氧化碳高温化学转化为甲醇具有较高的催化活性,但不幸的是,这些位点在热力学上也不稳定,因此很容易在这些位点下发生烧结和失活。状况。该研究的主要特点是设计核壳纳米粒子,其中包含夹在金属氧化物核和多孔金属氧化物壳之间的稳定且高活性、富含缺陷和应变的铜纳米晶体,并使用所得的纳米催化剂来全面了解铜和其他相关金属纳米材料在高温催化条件下的结构-性能关系。这种铜纳米晶体的合成是通过一种称为受控配体辅助蚀刻的方法进行的。该研究最终揭示了铜和其他相关金属纳米材料需要调整的关键结构因素,以有效催化各种反应,包括将二氧化碳转化为甲醇,或将温室气体转化为合成燃料或商品化学品。此外,该项目还为一名研究生和三名或更多本科生提供培训,其中包括来自历史上在科学和工程领域代表性不足的群体的学生。参与这项研究的学生使用罗格斯表面改性实验室以及 NIST 提供的基础设施,获得各种材料合成方法、催化和材料表征的跨学科实践培训。此外,研究结果将被纳入研究生课程,以解决可持续和可再生能源应用的材料工程问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tewodros Asefa其他文献
Periodic mesoporous organosilica with large cagelike pores
具有大笼状孔的周期性介孔有机二氧化硅
- DOI:
10.1021/cm025513e - 发表时间:
2002-04-06 - 期刊:
- 影响因子:8.6
- 作者:
J. Matos;M. Kruk;L. P. Mercuri;M. Jaroniec;Tewodros Asefa;N. Coombs;G. Ozin;T. Kamiyama;O. Terasaki - 通讯作者:
O. Terasaki
New nanocomposites: putting organic function 'inside' the channel walls of periodic mesoporous silica
新型纳米复合材料:将有机功能置于周期性介孔二氧化硅的通道壁“内部”
- DOI:
10.1039/b000950o - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Tewodros Asefa;Chiaki Yoshina;M. MacLachlan;G. Ozin - 通讯作者:
G. Ozin
Spherical and Anisotropic Nonmagnetic Core-Shell Nanomaterials: Synthesis and Characterization
球形和各向异性非磁性核壳纳米材料:合成与表征
- DOI:
10.1002/9783527610419.ntls0158 - 发表时间:
2010-10-15 - 期刊:
- 影响因子:0
- 作者:
Tewodros Asefa;A. Anan;Cole T. Duncan;You - 通讯作者:
You
CO2‐Mediated H2 Storage‐Release with Nanostructured Catalysts: Recent Progresses, Challenges, and Perspectives
CO2 — 介导的 H2 储存 — 使用纳米结构催化剂释放:最新进展、挑战和前景
- DOI:
10.1002/aenm.201901158 - 发表时间:
2019-07-03 - 期刊:
- 影响因子:27.8
- 作者:
Tewodros Asefa;Katherine Koh;Chang Won Yoon - 通讯作者:
Chang Won Yoon
Efficient noble metal-free (electro)catalysis of water and alcohol oxidations by zinc-cobalt layered double hydroxide.
锌钴层状双氢氧化物对水和醇氧化的高效无贵金属(电)催化。
- DOI:
10.1021/ja407174u - 发表时间:
2013-11-06 - 期刊:
- 影响因子:15
- 作者:
Xiaoxin Zou;A. Goswami;Tewodros Asefa - 通讯作者:
Tewodros Asefa
Tewodros Asefa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tewodros Asefa', 18)}}的其他基金
Structure-Property Studies of Novel Multifunctionally-Doped Core-Shell-Shell Nanomaterials for Improving Efficiency and Stability in Decontamination of Environmental Pollutants
新型多功能掺杂核-壳-壳纳米材料的结构-性能研究,用于提高环境污染物净化效率和稳定性
- 批准号:
1134289 - 财政年份:2011
- 资助金额:
$ 35.82万 - 项目类别:
Standard Grant
CAREER: Rationally Designing, Synthesizing and Self-Assembling Multifunctional, Hybrid Nanostructured Organosilica and Organosilica-Titania Materials for Catalysis
职业:合理设计、合成和自组装多功能、混合纳米结构有机二氧化硅和有机二氧化硅-二氧化钛催化材料
- 批准号:
1004218 - 财政年份:2009
- 资助金额:
$ 35.82万 - 项目类别:
Continuing Grant
Controlled Synthesis of Mesoporous Silicon Oxynitride Ceramics by Nitridization of Mesoporous Organosilicas
介孔有机硅氮化控制合成介孔氮氧化硅陶瓷
- 批准号:
0968937 - 财政年份:2009
- 资助金额:
$ 35.82万 - 项目类别:
Continuing Grant
Controlled Synthesis of Mesoporous Silicon Oxynitride Ceramics by Nitridization of Mesoporous Organosilicas
介孔有机硅氮化控制合成介孔氮氧化硅陶瓷
- 批准号:
0804846 - 财政年份:2008
- 资助金额:
$ 35.82万 - 项目类别:
Continuing Grant
CAREER: Rationally Designing, Synthesizing and Self-Assembling Multifunctional, Hybrid Nanostructured Organosilica and Organosilica-Titania Materials for Catalysis
职业:合理设计、合成和自组装多功能、混合纳米结构有机二氧化硅和有机二氧化硅-二氧化钛催化材料
- 批准号:
0645348 - 财政年份:2007
- 资助金额:
$ 35.82万 - 项目类别:
Continuing Grant
相似国自然基金
药-靶互作模型导向的β-酮腈杀菌分子合理设计及构效关系研究
- 批准号:22307039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高选择性PDE5抑制剂的合理设计、结构优化及其抗肺纤维化作用研究
- 批准号:82373732
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
共靶向肿瘤免疫和肿瘤代谢PD-L1/NAMPT双重抑制剂的合理设计及协同免疫活化抗肿瘤活性研究
- 批准号:22377082
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
超薄Fe基水滑石纳米片的合理设计与增强肿瘤声催化免疫治疗的机制研究
- 批准号:32301191
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向SDH/Qo酶的新型抑制剂的合理设计、优化及杀菌活性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SusChEM: Rational Design of Non-precious Metal Catalysts for a Future Biorefining Industry
合作研究:SusChEM:未来生物精炼行业非贵金属催化剂的合理设计
- 批准号:
1566104 - 财政年份:2016
- 资助金额:
$ 35.82万 - 项目类别:
Standard Grant
Collaborative Research: SusChEM: Rational design of non-precious metal catalysts for a future biorefining industry
合作研究:SusChEM:未来生物精炼行业非贵金属催化剂的合理设计
- 批准号:
1565964 - 财政年份:2016
- 资助金额:
$ 35.82万 - 项目类别:
Standard Grant
SusChEM: Rational Design of High Temperature Water-Gas Shift Catalysts with Non-Toxic Earth-Abundant Elements
SusChEM:采用地球丰富的无毒元素的高温水煤气变换催化剂的合理设计
- 批准号:
1511689 - 财政年份:2015
- 资助金额:
$ 35.82万 - 项目类别:
Standard Grant
SusChEM: Rational Design of Chiral Bipyridine N-Oxides for the Catalytic Propargylation of Aromatic Aldehydes
SusChEM:手性联吡啶氮氧化物催化芳香醛炔丙基化的合理设计
- 批准号:
1266022 - 财政年份:2013
- 资助金额:
$ 35.82万 - 项目类别:
Standard Grant
SusChEM: Rational design of aqueous interfaces of Earth abundant and nontoxic transition metal sulfides for photocatalytic conversion of CO2 to fuels
SusChEM:地球丰富且无毒的过渡金属硫化物的水界面的合理设计,用于二氧化碳光催化转化为燃料
- 批准号:
1336845 - 财政年份:2013
- 资助金额:
$ 35.82万 - 项目类别:
Standard Grant