Photoelectron Emission at Diamond-Liquid Interfaces

金刚石-液体界面处的光电子发射

基本信息

  • 批准号:
    1507432
  • 负责人:
  • 金额:
    $ 47.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

Non-technical AbstractDiamond surfaces, including inexpensive thin-films and industrial-grade diamond powders, have the usual ability to emit electrons directly in to water and other liquids when illuminated with ultraviolet light. Electrons in water are a potent chemical reducing agent, able to induce very difficult chemical transformations such as the conversion of dinitrogen to ammonia and the reduction of carbon dioxide, but they have not been well studied because of the absence of convenient and efficient methods of preparation. The ability to directly emit electrons into water using inexpensive, reusable industrial-grade diamond provides a number of opportunities for inducing novel chemical transformations not accessible with conventional photochemical or electrochemical methods. With support of the Solid State and Materials Chemistry program in the Division of Materials Research, the objectives of this project are to understand the fundamental materials properties that influence electron emission from diamond into water, to use this understanding to create photoelectron emitters that function with good stability in water and other non-vacuum environments, and to identify whether diamond can be modified to allow it to easily emit electrons using visible light. If successful, the ability to easily produce electrons in water using visible or near-ultraviolet light would enable new, energy-efficient chemical transformation pathways not currently possible. Graduate students are being trained in state-of-the-art electrochemical methods and receive extensive professional development opportunities. The principal investigator and students are also mentoring undergraduate students and high school students on summer research projects as part of a broader effort to increase the number of students who have the opportunity to engage in state-of-the-art scientific research. The principal investigator and students are actively participating in several programs targeted specifically toward enhancing the diversity of the scientific workforce. Technical AbstractThis renewal project is an outgrowth of research from the principal investigator demonstrating that diamond surfaces are able to emit electrons into water when illuminated with ultraviolet light, thereby allowing inexpensive diamond thin films and even industrial powders to be used as solid-state sources of electrons in liquids. While electron emission into vacuum has been studied previously, little is known about electron emission into water and other liquids. The primary goal of is project is to investigate the factors that control the photoemission of electrons from diamond into adjacent liquids, and to use this information to create photoelectron emitters that function with good stability and efficiency in non-vacuum environments. The project has three primary components. One is to understand how the electronic structure of the diamond-liquid interface influences the emission of electrons into adjacent liquids, by characterizing how variables such as the surface terminating layers, solution-phase ions, and externally applied potentials influence electron emission. A second is to determine whether metal-semiconductor junctions and plasmonic structures are able to increase the optical absorption of diamond and/or provide alternative pathways to exciting electrons to the conduction band. A third is to determine whether mid-gap states introduced by substitutional nitrogen or other dopants can provide a pathway to achieving electron emission using visible light. A wide range of experimental methods are being employed. X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopies are being used to characterize the chemical composition and electronic structure of diamond surfaces. Electrochemical methods including Mott-Schottky Analysis and Electrochemical Impedance Spectroscopy are being used to characterize the interfacial electronic structure and band alignments in aqueous media. Solvated electrons are being directly characterized using transient absorption spectroscopy and via chemical probes. Together, these methods are providing a comprehensive understanding of electron emission into liquids and providing insights into how to design interfaces that are most effective in enabling diamond to be used as a solid-state source of electrons in non-vacuum environments.
非技术摘要金刚石表面,包括廉价的薄膜和工业级金刚石粉末,在紫外线照射下通常具有直接向水和其他液体发射电子的能力。水中的电子是一种有效的化学还原剂,能够引发非常困难的化学转化,例如氮转化为氨和二氧化碳的还原,但由于缺乏方便有效的制备方法,它们尚未得到充分研究。使用廉价、可重复使用的工业级金刚石直接将电子发射到水中的能力为诱导传统光化学或电化学方法无法实现的新型化学转化提供了许多机会。在材料研究部固态和材料化学项目的支持下,该项目的目标是了解影响从金刚石到水中的电子发射的基本材料特性,并利用这种理解来创建具有良好功能的光电子发射器。水和其他非真空环境中的稳定性,并确定是否可以对金刚石进行改性,使其能够使用可见光轻松发射电子。如果成功,利用可见光或近紫外光在水中轻松产生电子的能力将实现目前不可能的新的、节能的化学转化途径。研究生正在接受最先进的电化学方法的培训,并获得广泛的专业发展机会。 首席研究员和学生还指导本科生和高中生进行暑期研究项目,作为增加有机会参与最先进科学研究的学生数量的更广泛努力的一部分。 首席研究员和学生正在积极参与多个专门针对增强科学劳动力多样性的项目。技术摘要这个更新项目是主要研究人员研究的成果,证明金刚石表面在紫外线照射下能够将电子发射到水中,从而允许廉价的金刚石薄膜甚至工业粉末用作固态电子源在液体中。 虽然之前已经研究了向真空中的电子发射,但对于向水和其他液体中的电子发射知之甚少。该项目的主要目标是研究控制电子从金刚石光发射到邻近液体的因素,并利用这些信息来创建在非真空环境中具有良好稳定性和效率的光电子发射器。 该项目由三个主要组成部分组成。一是通过表征表面终止层、溶液相离子和外部施加电势等变量如何影响电子发射,了解金刚石-液体界面的电子结构如何影响电子发射到相邻液体中。 第二个是确定金属-半导体结和等离子体结构是否能够增加金刚石的光学吸收和/或提供将电子激发到导带的替代途径。 第三个是确定由替代氮或其他掺杂剂引入的中间带隙态是否可以提供利用可见光实现电子发射的途径。 正在采用多种实验方法。 X 射线光电子能谱和紫外光电子能谱用于表征金刚石表面的化学成分和电子结构。 包括莫特肖特基分析和电化学阻抗谱在内的电化学方法被用来表征水介质中的界面电子结构和能带排列。 使用瞬态吸收光谱和化学探针直接表征溶剂化电子。 这些方法共同提供了对液体电子发射的全面理解,并提供了关于如何设计最有效地使金刚石在非真空环境中用作固态电子源的界面的见解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Hamers其他文献

Predicting the phytotoxic mechanism of action of LiCoO2nanomaterials using a novel multiplexed algal cytological imaging (MACI) assay and machine learning
  • DOI:
    10.1039/d3en00629h
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Eric Ostovich;Austin Henke;Curtis Green;Robert Hamers;Rebecca Klaper
  • 通讯作者:
    Rebecca Klaper
Role of surface contaminants, functionalities, defects and electronic structure: general discussion
  • DOI:
    10.1039/c4fd90027h
  • 发表时间:
    2014-11
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Richard McCreery;Chi-Chang Hu;Julie Macpherson;Matěj Velický;John Foord;Matteo Duca;Katherine Holt;Manuel Alvarez-Guerra;Robert Dryfe;Surbhi Sharma;Patrick R. Unwin;Jingping Hu;George Zheng Chen;Fulian Qiu;Robert Hamers;Mark Newton;Andrew N. J. Rodgers;Philip A. Ash;Deborah Lomax;Keith Stevenson;Aleix Güell;Thomas Varley;Stephen Hodge;Fernanda Juarez
  • 通讯作者:
    Fernanda Juarez
Synthesis and characterization of alkylsilane ethers with oligo(ethylene oxide) substituents for safe electrolytes in lithium-ion batteries
用于锂离子电池安全电解质的具有低聚环氧乙烷取代基的烷基硅烷醚的合成和表征
  • DOI:
    10.1039/c0jm01596b
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lingzhi Zhang;Leslie Lyons;Jocelyn Newhouse;Zhengcheng Zhang;Megan Straughan;Zonghai Chen;Khalil Amine;Robert Hamers;Robert West
  • 通讯作者:
    Robert West
Carbon electrode interfaces for synthesis, sensing and electrocatalysis: general discussion
  • DOI:
    10.1039/c4fd90038c
  • 发表时间:
    2014-11
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Yury Gogotsi;Richard McCreery;Stephen M. Lyth;Robert Dryfe;John Foord;Matěj Velický;Julie Macpherson;Matteo Duca;Katherine Holt;Manuel Alvarez-Guerra;Heisi Kurig;Surbhi Sharma;Patrick R. Unwin;George Zheng Chen;Milo Shaffer;Taiwo Alaje;Robert Hamers;Mark Newton;Philip A. Ash;Keith Stevenson;Siegfried Waldvogel;Jingping Hu;Aleix Güell;Jonathan Quinson
  • 通讯作者:
    Jonathan Quinson

Robert Hamers的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Hamers', 18)}}的其他基金

NSF Center for Sustainable Nanotechnology
NSF 可持续纳米技术中心
  • 批准号:
    2001611
  • 财政年份:
    2020
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Cooperative Agreement
Photoelectron Emission at Semiconductor-Liquid Interfaces
半导体-液体界面处的光电子发射
  • 批准号:
    1904106
  • 财政年份:
    2019
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Standard Grant
RAISE-TAQS: Quantum-based chemical sensing
RAISE-TAQS:基于量子的化学传感
  • 批准号:
    1839174
  • 财政年份:
    2018
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Standard Grant
Needs and Opportunities for Mid-Scale Instrumentation in Chemistry
化学中中型仪器的需求和机遇
  • 批准号:
    1644338
  • 财政年份:
    2016
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Standard Grant
Center for Sustainable Nanotechnology
可持续纳米技术中心
  • 批准号:
    1503408
  • 财政年份:
    2015
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Cooperative Agreement
Functional Carbon Nano-skins: Integrating Nanostructured Oxides with Molecular Systems
功能性碳纳米皮:纳米结构氧化物与分子系统的集成
  • 批准号:
    1310293
  • 财政年份:
    2013
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Standard Grant
Photoelectron Emission at Diamond-Liquid Interfaces
金刚石-液体界面处的光电子发射
  • 批准号:
    1207281
  • 财政年份:
    2012
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Continuing Grant
CCI Phase 1: Center for Sustainable Nanotechnology
CCI 第一阶段:可持续纳米技术中心
  • 批准号:
    1240151
  • 财政年份:
    2012
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Standard Grant
Multifunctional Molecular Interfaces to Metal Oxide Surfaces
金属氧化物表面的多功能分子界面
  • 批准号:
    0911543
  • 财政年份:
    2009
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Continuing Grant
Electrocatalytically Active Molecule-Nanostructure Hybrid Materials
电催化活性分子-纳米结构杂化材料
  • 批准号:
    0706559
  • 财政年份:
    2008
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Continuing Grant

相似国自然基金

秸秆还田对稻田净温室气体排放影响的空间分异机制
  • 批准号:
    42301059
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
产品级碳排放强度的测度和应用
  • 批准号:
    72303231
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
我国典型农田土壤真菌反硝化N2O排放贡献及调控机制研究
  • 批准号:
    42377291
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
丛枝菌根真菌驱动农田N2O排放的根系分泌物作用机制
  • 批准号:
    32371633
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
间歇性河流干湿胁迫下底栖微生态系统的稳态转换过程及对碳排放通量的影响机制
  • 批准号:
    52379063
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

BROADBAND FOCUSING FOR EXTREME MULTIMODAL MICROSCOPY
用于极端多模态显微镜的宽带聚焦
  • 批准号:
    10573976
  • 财政年份:
    2023
  • 资助金额:
    $ 47.38万
  • 项目类别:
Charge State Conversion, Dynamics, and Single Photon Emission from Diamond using High Voltage Nanosecond Pulse Discharge
使用高压纳秒脉冲放电的金刚石电荷态转换、动力学和单光子发射
  • 批准号:
    2204667
  • 财政年份:
    2022
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Standard Grant
Charge State Conversion, Dynamics, and Single Photon Emission from Diamond using High Voltage Nanosecond Pulse Discharge
使用高压纳秒脉冲放电的金刚石电荷态转换、动力学和单光子发射
  • 批准号:
    2204667
  • 财政年份:
    2022
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Standard Grant
Silicon-vacancy color centers in phosphorous-doped diamond for bright single-photon emission under electrical pumping
掺磷金刚石中的硅空位色心可在电泵浦下实现明亮的单光子发射
  • 批准号:
    410405168
  • 财政年份:
    2019
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Research Grants
Feasibility Study on Electron Emission Device using Diamond Semiconductors for Space Applications
用于空间应用的金刚石半导体电子发射装置的可行性研究
  • 批准号:
    16H04595
  • 财政年份:
    2016
  • 资助金额:
    $ 47.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了