UNS: Collaborative Research: Turbulent Flame Structure of Cavity Stabilized Reacting Shear Layers: Effects of Flow Compressibility, Heat Release, and Finite-rate Kinetics

UNS:合作研究:腔稳定反应剪切层的湍流火焰结构:流动压缩性、放热和有限速率动力学的影响

基本信息

  • 批准号:
    1510222
  • 负责人:
  • 金额:
    $ 17.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-01 至 2019-09-30
  • 项目状态:
    已结题

项目摘要

1511791(Chelliah)/1511520(Cutler)/1510222(Edwards)High-speed and supersonic combustion is of vital importance to high-speed transport. The research team comprised of experimentalist and numerical modelers will try to understand, using a unique facility and state-of-art numerical models, how fuel burning at such high speed happens and how stable combustion can be achieved. A team of undergraduate and graduate students will be involved in the research and the data and results will be widely published. To understand the flame stabilization mechanism requires the understanding flame structure resulting from the interaction between the chemical reaction, which releases heat, and the flow. Under high-speed conditions, the flow is turbulent. The proposal focuses on this interaction under supersonic conditions where compressibility also plays a role. The flow geometry chosen is high-speed reacting shear flow over cavity, which is commonly believed to be a good candidate for supersonic combustion and propulsion. The proposed facility (located at the lead PI's institution - UVa) is unique, which has been developed over the past decades and is well and appropriately leveraged for the proposed research. Fundamental data on flame structure and statistics on key species are to be obtained experimentally. Computational results using DNS (Direct Numerical Simulation) will supplement the experiments to provide additional information not accessible from experiments in developing submodels, which can be used in the future development of high-speed propulsion combustors. The experimental data are of archival value. Close collaboration proposed with researchers from government labs would likely amplify its usefulness.
1511791(Chelliah)/1511520(Cutler)/1510222(Edwards)高速超音速燃烧对于高速运输至关重要。 由实验学家和数值建模师组成的研究团队将尝试使用独特的设施和最先进的数值模型来了解燃料如何以如此高的速度燃烧以及如何实现稳定燃烧。 一个由本科生和研究生组成的团队将参与这项研究,数据和结果将被广泛发表。要了解火焰稳定机制,需要了解释放热量的化学反应与流动之间相互作用所产生的火焰结构。 在高速条件下,流动是紊流的。 该提案重点关注压缩性也发挥作用的超音速条件下的这种相互作用。 所选择的流动几何形状是空腔上的高速反应剪切流,通常认为这是超音速燃烧和推进的良好候选者。拟议的设施(位于主要 PI 的机构 - UVa)是独一无二的,它已经在过去几十年中得到了发展,并且很好且适当地用于拟议的研究。火焰结构的基本数据和关键物种的统计数据需要通过实验获得。使用 DNS(直接数值模拟)的计算结果将补充实验,以提供开发子模型实验中无法获得的附加信息,这些信息可用于未来高速推进燃烧室的开发。实验数据具有档案价值。与政府实验室研究人员的密切合作可能会增强其实用性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jack Edwards其他文献

On the Multi-GPU Computing of a Reconstructed Discontinuous Galerkin Method for Compressible Flows on 3 D Hybrid Grids CONFERENCE
3D 混合网格上可压缩流重构间断伽辽金法的多 GPU 计算
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yidong Xia;Jialin Lou;Lixiang Luo;H. Luo;Jack Edwards
  • 通讯作者:
    Jack Edwards
The reciprocating gait orthosis: long-term usage patterns.
往复式步态矫形器:长期使用模式。
OpenACC directive-based GPU acceleration of an implicit reconstructed discontinuous Galerkin method for compressible flows on 3 D unstructured grids CONFERENCE
基于 OpenACC 指令的 GPU 加速隐式重建不连续 Galerkin 方法,用于 3D 非结构化网格上的可压缩流
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jialin Lou;Yidong Xia;Lixiang Luo;H. Luo;Jack Edwards;F. Mueller
  • 通讯作者:
    F. Mueller

Jack Edwards的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于交易双方异质性的工程项目组织间协作动态耦合研究
  • 批准号:
    72301024
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

UNS: Collaborative Research: Global Agricultural Impacts of Stratospheric Aerosol Climate Intervention
UNS:合作研究:平流层气溶胶气候干预对全球农业的影响
  • 批准号:
    2129627
  • 财政年份:
    2021
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Standard Grant
UNS: Collaborative Research: Global Agricultural Impacts of Stratospheric Aerosol Climate Intervention
UNS:合作研究:平流层气溶胶气候干预对全球农业的影响
  • 批准号:
    2028541
  • 财政年份:
    2020
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Standard Grant
UNS: Collaborative Research: Global Agricultural Impacts of Stratospheric Aerosol Climate Intervention
UNS:合作研究:平流层气溶胶气候干预对全球农业的影响
  • 批准号:
    2028371
  • 财政年份:
    2020
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Standard Grant
UNS: Collaborative Research: Dynamics of Active Particles in Anisotropic Fluids
UNS:合作研究:各向异性流体中活性粒子的动力学
  • 批准号:
    1852379
  • 财政年份:
    2018
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Standard Grant
UNS: Collaborative Research: Effects of Nano-Bio Interactions on Nanoparticle Fate and Transport in Porous Media
UNS:合作研究:纳米生物相互作用对多孔介质中纳米颗粒命运和传输的影响
  • 批准号:
    1705346
  • 财政年份:
    2017
  • 资助金额:
    $ 17.4万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了