UNS: Physical Mechanisms of Wall-Bounded Turbulence and Turbulent Mixing at Extreme Reynolds

UNS:极端雷诺下壁界湍流和湍流混合的物理机制

基本信息

  • 批准号:
    1510100
  • 负责人:
  • 金额:
    $ 31.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-07-01 至 2018-06-30
  • 项目状态:
    已结题

项目摘要

1510100(Hultmark)The goal of the proposed research is to improve our theoretical understanding and modeling of turbulent flow close to a solid object, which is the most important and relevant to engineering applications class of turbulent flows (since turbulence found in industrial processes, aerospace and naval applications, and in the atmospheric boundary layer fall within this class). A new experimental technique for measuring velocity fluctuations at resolutions that are one order of magnitude finer than currently available techniques is also proposed.Because of the complexity of turbulent flows, it is very challenging to obtain high quality experimental data and to conduct high fidelity numerical simulations at the scales and resolutions that have practical interest and that are needed to validate theoretical advances. Detailed studies have often been replaced with simple parameterizations and correlations. Simple analogies between momentum transfer and heat transfer have been the foundation for most turbulent heat transfer models, even if it is well-known that these analogies perform poorly in many applications. While significant breakthroughs have taken place in the last twenty years, there are still limitations in current instrumentation and high Reynolds number studies have often been limited to measurements of only one component of the velocity vector. This is where the contribution of the proposed work is: it proposes a study of turbulent transport over a wide range of Reynolds numbers. It is proposed to overcome experimental limitations by deploying novel MEMS-based flow sensors. By combining the proposed novel instrumentation with a heated pipe-flow facility, unprecedented multi-component velocity and temperature data are expected to be obtained in a unique facility, the Princeton Superpipe, at extreme Reynolds numbers. In addition fundamental theoretical work will be conducted to integrate the study of turbulent heat transfer with turbulent momentum studies. Results from this work, if successful, has the potential to increase the capabilities of laboratory setups across the world. Educational and outreach activities that include graduate and undergraduate students, and restructuring of undergraduate lab courses are proposed. Activities of the project will find leverage from an existing REU program at Princeton.
1510100(Hultmark)拟议研究的目标是提高我们对接近固体的湍流的理论理解和建模,这是最重要且与湍流工程应用类相关的(因为在工业过程、航空航天中发现湍流)和海军应用,以及大气边界层属于此类)。还提出了一种测量速度脉动的新实验技术,其分辨率比现有技术精细一个数量级。由于湍流的复杂性,获得高质量的实验数据并进行高保真度数值模​​拟非常具有挑战性。具有实际意义并且需要验证理论进展的规模和分辨率。详细的研究常常被简单的参数化和相关性所取代。动量传递和传热之间的简单类比一直是大多数湍流传热模型的基础,尽管众所周知这些类比在许多应用中表现不佳。尽管在过去二十年中取得了重大突破,但当前的仪器仍然存在局限性,高雷诺数研究通常仅限于仅测量速度矢量的一个分量。这就是拟议工作的贡献所在:它提出了对大范围雷诺数下的湍流传输的研究。建议通过部署新型 MEMS 流量传感器来克服实验限制。通过将所提出的新型仪器与加热管流设施相结合,预计将在独特的设施(普林斯顿超级管道)中以极端雷诺数获得前所未有的多分量速度和温度数据。 此外,还将开展基础理论工作,将湍流传热研究与湍流动量研究相结合。 这项工作的结果如果成功,将有可能提高世界各地实验室设置的能力。建议开展包括研究生和本科生在内的教育和外展活动,并重组本科生实验室课程。该项目的活动将利用普林斯顿大学现有的 REU 项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marcus Hultmark其他文献

Marcus Hultmark的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marcus Hultmark', 18)}}的其他基金

Collaborative Research: EAGER: Characterizing a Novel Turbulence-generating System to Facilitate Exploration of Insect Orientation Behavior Under Real-world Conditions
合作研究:EAGER:表征新型湍流生成系统,以促进现实条件下昆虫定向行为的探索
  • 批准号:
    2132727
  • 财政年份:
    2021
  • 资助金额:
    $ 31.93万
  • 项目类别:
    Standard Grant
I-Corps: Commercial Viability Discovery of the Elastic Filament Velocimeetry
I-Corps:弹性丝测速的商业可行性发现
  • 批准号:
    1839130
  • 财政年份:
    2018
  • 资助金额:
    $ 31.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Parameterization of the Land-Surface Thermal and Moisture Heterogeneities
合作研究:地表热量和水分异质性的参数化
  • 批准号:
    1649049
  • 财政年份:
    2017
  • 资助金额:
    $ 31.93万
  • 项目类别:
    Standard Grant
CAREER: Revealing the characteristics of high Reynolds number wakes with rotation
职业:揭示高雷诺数旋转尾流的特征
  • 批准号:
    1652583
  • 财政年份:
    2017
  • 资助金额:
    $ 31.93万
  • 项目类别:
    Standard Grant
Experimental Investigation of the Scalability of WindTurbine Aerodynamics
风力涡轮机空气动力学可扩展性的实验研究
  • 批准号:
    1435254
  • 财政年份:
    2014
  • 资助金额:
    $ 31.93万
  • 项目类别:
    Standard Grant

相似国自然基金

儿童白血病生存者身体活动的行为改变整合机制与亲子进阶式移动干预研究
  • 批准号:
    72374231
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
我国居家脊髓损伤人群身体活动的环境-个人交互影响机制和同伴远程促进模式研究
  • 批准号:
    72374229
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
大肠杆菌肠型与高龄老人身体机能衰退的关系及其机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
Hox13基因调控斑马鱼尾部身体形成的分子机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
乡村女性手工艺者的身体实践与地方重构机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 31.93万
  • 项目类别:
    Standard Grant
Impact of physical exercise on brain-bone marrow interactions in postmenopausal rats: potential mechanisms preventing menopause-induced hypertension
体育锻炼对绝经后大鼠脑-骨髓相互作用的影响:预防绝经期高血压的潜在机制
  • 批准号:
    24K20609
  • 财政年份:
    2024
  • 资助金额:
    $ 31.93万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
GOALI: Understanding the Physical Mechanisms of Distortion and Controlling its Effects in Sintering-based Additive Manufacturing Processes
目标:了解变形的物理机制并控制其在基于烧结的增材制造工艺中的影响
  • 批准号:
    2328678
  • 财政年份:
    2024
  • 资助金额:
    $ 31.93万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344214
  • 财政年份:
    2024
  • 资助金额:
    $ 31.93万
  • 项目类别:
    Standard Grant
Exploring physical reservoir computing mechanisms by ultra-thin Si nanoresonators for enhancing computational reliability
通过超薄硅纳米谐振器探索物理储层计算机制以提高计算可靠性
  • 批准号:
    24K08219
  • 财政年份:
    2024
  • 资助金额:
    $ 31.93万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了