UNS: Mechanical/Chemical Failure of Solid Electrolyte Interphase in Lithium-ion Batteries: Understanding Its Mechanisms and Suppressing Its Onset
UNS:锂离子电池中固体电解质界面的机械/化学失效:了解其机制并抑制其发生
基本信息
- 批准号:1510085
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Jonghyun Park Proposal Number: 1510085Lithium ion batteries support the development of sustainable energy systems by storing electricity generated by renewable resources such as wind and solar energy, or by powering zero-emission electric vehicles charged by electricity from renewable resources. However, current rechargeable lithium ion batteries can hold only about 10% of their theoretical energy content, and new concepts are needed to improve energy storage capacity and power discharge rate. The addition of the metal germanium to lithium ion battery electrodes offers the potential to improve both storage capacity and power. However, the germanium swells significantly upon charging and discharging, which cracks the battery and renders it useless. The goals of this project are to determine the mechanisms of the failure process, and then to use this fundamental understanding to develop coating materials and processes for the germanium particles that will control the swelling behavior. The educational activities associated with this project include efforts to broaden participation by involving undergraduates from nearly Lincoln University of Missouri in the proposed research.The use of geranium (Ge) metal in the solid interface layer of the anode of lithium ion batteries offers the potential for high theoretical electrochemical energy storage capacity and power discharge rate. However, upon repeated charge/discharge cycles, the solid electrolyte interface layer of the anode breaks down. The damage to the solid electrolyte layer is due to the mechanical volume change in Ge metal during lithium-ion insertion (charging) and extraction (discharge), which causes cracks and pulverization of this layer that lead to loss of electrode contact and dissolution of the solid electrolyte layer into the electrolyte. The goals of the research are to characterize the mechanisms of failure in the Ge anode, and then use this fundamental understanding to develop fabrication strategies for suppressing these damage processes by controlling internal structure of the solid electrolyte layer containing Ge nanoparticles, as well as its interface with active materials. The mechanisms of failure will be elucidated by characterizing mechanical strength and chemical dissolution rate of the solid interface layer components. The internal structure of the solid interface layer will be controlled by using Atomic Layer Deposition (ALD) to coat additive materials, for example metal oxides, onto Ge nanoparticles in the attempt to reduce stress upon lithium ion insertion and extraction. A multiscale model will be developed that couples the nanoparticle level behavior in the solid interface layer to electrochemical cell operation to predict the conditions that trigger solid interface layer failure and its subsequent effect on battery performance. This model will then be used to identify strategies to optimize the ALD materials and process for improved mechanical stability and battery performance. To connect the research to education, the PI will introduce energy materials and battery design concepts in a capstone mechanical engineering capstone design course, and will give demonstrations on lithium-ion battery coin cell assembly for undergraduate and K-12 students at the Missouri University of Science and Technology.
PI:Jonghyun Park 提案编号:1510085 锂离子电池通过存储风能和太阳能等可再生资源产生的电力,或为由可再生资源电力充电的零排放电动汽车提供动力,支持可持续能源系统的发展。 然而,目前的可充电锂离子电池只能容纳其理论能量的10%左右,需要新的概念来提高储能容量和功率放电速率。 在锂离子电池电极中添加金属锗有可能提高存储容量和功率。 然而,锗在充电和放电时会显着膨胀,从而使电池破裂并使其报废。 该项目的目标是确定失效过程的机制,然后利用这一基本认识来开发用于控制膨胀行为的锗颗粒的涂层材料和工艺。 与该项目相关的教育活动包括努力扩大参与范围,让来自密苏里州林肯大学的本科生参与拟议的研究。在锂离子电池阳极的固体界面层中使用天竺葵(Ge)金属提供了潜力高理论电化学储能容量和功率放电倍率。 然而,在重复充电/放电循环后,阳极的固体电解质界面层会损坏。固体电解质层的损坏是由于锂离子插入(充电)和脱出(放电)期间Ge金属的机械体积变化导致该层破裂和粉碎,导致电极接触丧失和电解质溶解。固体电解质层进入电解质。该研究的目标是表征Ge阳极的失效机制,然后利用这一基本认识来开发制造策略,通过控制含有Ge纳米颗粒的固体电解质层及其界面来抑制这些损坏过程与活性材料。将通过表征固体界面层组件的机械强度和化学溶解速率来阐明失效机制。 固体界面层的内部结构将通过使用原子层沉积(ALD)将添加剂材料(例如金属氧化物)涂覆到Ge纳米颗粒上来控制,以试图减少锂离子嵌入和脱嵌时的应力。 将开发一个多尺度模型,将固体界面层中的纳米粒子水平行为与电化学电池操作耦合起来,以预测触发固体界面层失效的条件及其对电池性能的后续影响。 然后,该模型将用于确定优化 ALD 材料和工艺的策略,以提高机械稳定性和电池性能。 为了将研究与教育联系起来,PI 将在机械工程顶点设计课程中介绍能源材料和电池设计概念,并将为密苏里大学的本科生和 K-12 学生演示锂离子电池纽扣电池组装。科学技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonghyun Park其他文献
Automatic Detection and Recognition of Shop Name in Outdoor Signboard Images
户外招牌图像中店铺名称的自动检测与识别
- DOI:
10.1109/isspit.2008.4775652 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Jonghyun Park;Gueesang Lee;A. Lai;Euichul Kim;Junsik Lim;Soohyung Kim;Hyungjeong Yang;Sang - 通讯作者:
Sang
Unsupervised Color Image Segmentation Using Mean Shift and Deterministic Annealing EM
使用均值平移和确定性退火 EM 进行无监督彩色图像分割
- DOI:
10.1007/11424925_91 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Wanhyun Cho;Jonghyun Park;Myungeun Lee;Soonyoung Park - 通讯作者:
Soonyoung Park
Development of a pressure sensor system for unobtrusive monitoring of abdominal muscle activities
开发用于不引人注目地监测腹部肌肉活动的压力传感器系统
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Joonnyong Lee;Jonghyun Park;Kyu Jin Lee;Minkyung Cho;Keewon Kim;Hee Chan Kim;S. Chung - 通讯作者:
S. Chung
Malaysian PLCs’ Responses to Survey: An Indicator of CSR Commitments
马来西亚上市公司对调查的回应:企业社会责任承诺的指标
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Janice L. H. Nga;Jonghyun Park - 通讯作者:
Jonghyun Park
Estimation of the Medium Transmission Using Graph-based Image Segmentation and Visibility Restoration
使用基于图的图像分割和可见性恢复来估计介质传输
- DOI:
10.5573/ieek.2013.50.4.163 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Sangkyoon Kim;Jonghyun Park;Soonyoung Park - 通讯作者:
Soonyoung Park
Jonghyun Park的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonghyun Park', 18)}}的其他基金
EAGER: SARE: Security and Functionality of Energy Storage Devices from an External Electromagnetic Attack
EAGER:SARE:储能设备免受外部电磁攻击的安全性和功能
- 批准号:
2028992 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Multiscale Manufacturing for Advanced Energy Storage Devices
先进储能设备的多规模制造
- 批准号:
1917055 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Additive Manufacturing of Mechanically Strong and Electrochemically Robust Porous Electrodes for Ultra-High Energy Density Batteries
GOALI/合作研究:用于超高能量密度电池的机械强度和电化学鲁棒性多孔电极的增材制造
- 批准号:
1563029 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Optimal Energy Scheduling in Microgrids with Photovoltaic (PV) Generation and Energy Storage Systems
具有光伏 (PV) 发电和储能系统的微电网中的最优能源调度
- 批准号:
1610396 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
GOALI: Battery Health Dynamics and Its Management
目标:电池健康动态及其管理
- 批准号:
1538415 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
基于机械力化学作用煤基碳点的可控制备及其缓蚀行为
- 批准号:52304284
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
电石的机械化学热力学及非均相反应过程强化基础
- 批准号:22338002
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
机械力化学诱导的小麦胚乳颗粒细化机制研究
- 批准号:32301999
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
集成电路化学机械抛光中微尺度电偶效应对金属平坦化的影响机制
- 批准号:52301086
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
机械化学法调控锰铈催化剂低温协同催化降解NOx和二噁英的研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Evolution of a novel trait promoted by mechanical stress
机械应力促进新特性的进化
- 批准号:
23H00385 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Regulation of Intraocular Pressure via a Novel Adjustable Glaucoma Drainage Device
通过新型可调节青光眼引流装置调节眼压
- 批准号:
10735637 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Development of innovative multi-material joining technology for CN using mechanical and chemical effects
利用机械和化学效应开发创新的 CN 多材料连接技术
- 批准号:
23K03593 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Towards a Quantum-Mechanical Understanding of Redox Chemistry in Proteins
对蛋白质氧化还原化学的量子力学理解
- 批准号:
10606459 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
CAREER: Realizing Alternative Cements with Chemical Kinetics: Tuned Mechanical–Chemical Properties of Cementitious Magnesium Silicate Hydrates by Multi-Scale Synthetic Control
职业:利用化学动力学实现替代水泥:通过多尺度合成控制调整胶凝硅酸镁水合物的机械和化学性能
- 批准号:
2342381 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant