UNS: Mechanical/Chemical Failure of Solid Electrolyte Interphase in Lithium-ion Batteries: Understanding Its Mechanisms and Suppressing Its Onset
UNS:锂离子电池中固体电解质界面的机械/化学失效:了解其机制并抑制其发生
基本信息
- 批准号:1510085
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
PI: Jonghyun Park Proposal Number: 1510085Lithium ion batteries support the development of sustainable energy systems by storing electricity generated by renewable resources such as wind and solar energy, or by powering zero-emission electric vehicles charged by electricity from renewable resources. However, current rechargeable lithium ion batteries can hold only about 10% of their theoretical energy content, and new concepts are needed to improve energy storage capacity and power discharge rate. The addition of the metal germanium to lithium ion battery electrodes offers the potential to improve both storage capacity and power. However, the germanium swells significantly upon charging and discharging, which cracks the battery and renders it useless. The goals of this project are to determine the mechanisms of the failure process, and then to use this fundamental understanding to develop coating materials and processes for the germanium particles that will control the swelling behavior. The educational activities associated with this project include efforts to broaden participation by involving undergraduates from nearly Lincoln University of Missouri in the proposed research.The use of geranium (Ge) metal in the solid interface layer of the anode of lithium ion batteries offers the potential for high theoretical electrochemical energy storage capacity and power discharge rate. However, upon repeated charge/discharge cycles, the solid electrolyte interface layer of the anode breaks down. The damage to the solid electrolyte layer is due to the mechanical volume change in Ge metal during lithium-ion insertion (charging) and extraction (discharge), which causes cracks and pulverization of this layer that lead to loss of electrode contact and dissolution of the solid electrolyte layer into the electrolyte. The goals of the research are to characterize the mechanisms of failure in the Ge anode, and then use this fundamental understanding to develop fabrication strategies for suppressing these damage processes by controlling internal structure of the solid electrolyte layer containing Ge nanoparticles, as well as its interface with active materials. The mechanisms of failure will be elucidated by characterizing mechanical strength and chemical dissolution rate of the solid interface layer components. The internal structure of the solid interface layer will be controlled by using Atomic Layer Deposition (ALD) to coat additive materials, for example metal oxides, onto Ge nanoparticles in the attempt to reduce stress upon lithium ion insertion and extraction. A multiscale model will be developed that couples the nanoparticle level behavior in the solid interface layer to electrochemical cell operation to predict the conditions that trigger solid interface layer failure and its subsequent effect on battery performance. This model will then be used to identify strategies to optimize the ALD materials and process for improved mechanical stability and battery performance. To connect the research to education, the PI will introduce energy materials and battery design concepts in a capstone mechanical engineering capstone design course, and will give demonstrations on lithium-ion battery coin cell assembly for undergraduate and K-12 students at the Missouri University of Science and Technology.
PI:Jonghyun Park提案编号:1510085LITHIUM ION电池通过存储由风能和太阳能等可再生资源产生的电力,或通过为可再生资源电力收取的零发射电动汽车来支持可持续能源系统的开发。 但是,当前可充电锂离子电池只能容纳其理论能量含量的10%,并且需要新的概念来提高能源存储容量和功率放电速率。 在锂离子电池电极中添加金属锗可提供提高存储容量和功率的潜力。 但是,锗在充电和排放后大大膨胀,这会破裂电池并使电池毫无用处。 该项目的目标是确定故障过程的机制,然后使用这种基本理解来开发涂覆材料和过程,以控制将控制肿胀行为的锗颗粒。 与该项目相关的教育活动包括努力扩大参与的努力,这使密苏里州林肯大学的本科生参与了拟议的研究。在锂离子电池阳极的固体界面层中使用天Geranium(GE)金属,为高理论理论的理论电学能源存储能力和电力排放率提供了潜力。 但是,在反复的电荷/放电周期后,阳极的固体电解质界面层分解。固体电解质层的损坏是由于锂离子插入过程中GE金属的机械体积变化(充电)和提取(放电),这会导致该层的裂纹和粉碎,从而导致电极接触损失和固体电解质层溶解到电解质中。该研究的目标是表征GE阳极中故障的机制,然后使用这种基本理解来开发制造策略来通过控制含有GE纳米颗粒的实心电解质层的内部结构以及使用活性材料的界面来抑制这些损伤过程。通过表征固体界面层组件的机械强度和化学溶解速率,将阐明故障机制。 实心界面层的内部结构将通过使用原子层沉积(ALD)来控制添加材料,例如金属氧化物,以涂上GE纳米颗粒,以减少锂离子插入和提取的压力。 将开发一个多尺度模型,使实心界面层中的纳米颗粒级别行为伴随着电化学细胞操作,以预测触发固体接口层故障及其随后对电池性能的影响的条件。 然后,该模型将用于确定优化ALD材料和过程以提高机械稳定性和电池性能的策略。 为了将研究与教育联系起来,PI将在顶峰机械工程盖石设计课程中引入能源材料和电池设计概念,并将在密苏里州科学技术大学的本科生和K-12学生中进行有关锂离子电池电池组装的演示。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jonghyun Park其他文献
Unsupervised Color Image Segmentation Using Mean Shift and Deterministic Annealing EM
使用均值平移和确定性退火 EM 进行无监督彩色图像分割
- DOI:
10.1007/11424925_91 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Wanhyun Cho;Jonghyun Park;Myungeun Lee;Soonyoung Park - 通讯作者:
Soonyoung Park
Development of a pressure sensor system for unobtrusive monitoring of abdominal muscle activities
开发用于不引人注目地监测腹部肌肉活动的压力传感器系统
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Joonnyong Lee;Jonghyun Park;Kyu Jin Lee;Minkyung Cho;Keewon Kim;Hee Chan Kim;S. Chung - 通讯作者:
S. Chung
Malaysian PLCs’ Responses to Survey: An Indicator of CSR Commitments
马来西亚上市公司对调查的回应:企业社会责任承诺的指标
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Janice L. H. Nga;Jonghyun Park - 通讯作者:
Jonghyun Park
Automatic Detection and Recognition of Shop Name in Outdoor Signboard Images
户外招牌图像中店铺名称的自动检测与识别
- DOI:
10.1109/isspit.2008.4775652 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Jonghyun Park;Gueesang Lee;A. Lai;Euichul Kim;Junsik Lim;Soohyung Kim;Hyungjeong Yang;Sang - 通讯作者:
Sang
Medical image registration using the modified conditional entropy measure combining the spatial and intensity information
使用结合空间和强度信息的改进的条件熵测量的医学图像配准
- DOI:
10.1117/12.844601 - 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Myungeun Lee;Soopil Kim;Wanhyun Cho;Sun;Jonghyun Park;Soonyoung Park;Junsik Lim - 通讯作者:
Junsik Lim
Jonghyun Park的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jonghyun Park', 18)}}的其他基金
EAGER: SARE: Security and Functionality of Energy Storage Devices from an External Electromagnetic Attack
EAGER:SARE:储能设备免受外部电磁攻击的安全性和功能
- 批准号:
2028992 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Multiscale Manufacturing for Advanced Energy Storage Devices
先进储能设备的多规模制造
- 批准号:
1917055 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Additive Manufacturing of Mechanically Strong and Electrochemically Robust Porous Electrodes for Ultra-High Energy Density Batteries
GOALI/合作研究:用于超高能量密度电池的机械强度和电化学鲁棒性多孔电极的增材制造
- 批准号:
1563029 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Optimal Energy Scheduling in Microgrids with Photovoltaic (PV) Generation and Energy Storage Systems
具有光伏 (PV) 发电和储能系统的微电网中的最优能源调度
- 批准号:
1610396 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
GOALI: Battery Health Dynamics and Its Management
目标:电池健康动态及其管理
- 批准号:
1538415 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似国自然基金
面向电动工程机械的复合储能电液伺服泵控单元能量高效调控研究
- 批准号:52305082
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
矿山旋转机械的多模态小样本故障诊断方法研究
- 批准号:52374155
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向移动工程机械的混合储能系统全寿命周期管理策略研究
- 批准号:62303150
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向新能源工程机械的滚动启发式动态规划能量优化研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向玉米智能除草机械的秧苗精确定位方法研究
- 批准号:31901408
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of innovative multi-material joining technology for CN using mechanical and chemical effects
利用机械和化学效应开发创新的 CN 多材料连接技术
- 批准号:
23K03593 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Realizing Alternative Cements with Chemical Kinetics: Tuned Mechanical–Chemical Properties of Cementitious Magnesium Silicate Hydrates by Multi-Scale Synthetic Control
职业:利用化学动力学实现替代水泥:通过多尺度合成控制调整胶凝硅酸镁水合物的机械和化学性能
- 批准号:
2342381 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Challenge of high concentration hydrogen storage in fullerenes utilizing chemical-mechanical reaction
利用化学机械反应在富勒烯中高浓度储氢的挑战
- 批准号:
22K18757 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Striking a balance: mapping the structural stability and mechanical and chemical responsiveness of collagen proteins
取得平衡:绘制胶原蛋白的结构稳定性以及机械和化学反应性
- 批准号:
RGPIN-2020-04680 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Discovery Grants Program - Individual
Multi-Physics of Elastomer Aging: Macrostructure Mechanical Properties based on Morphological Chemical Degenerations
弹性体老化的多物理场:基于形态化学退化的宏观结构力学性能
- 批准号:
2309207 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Standard Grant