Super-Hydrophobic Surface Enabled Microfluidic Energy Conversion

超疏水表面实现微流体能量转换

基本信息

  • 批准号:
    1509866
  • 负责人:
  • 金额:
    $ 27.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Currently, rechargeable batteries are widely used to power electronic devices. The use of batteries is increasing significantly to meet the demand of the rapidly growing number and density of portable electronic devices. Such rapid growth results in major challenges in recycling and replacement of batteries, and environmental concerns related both to manufacturing and disposal of batteries. Therefore, the development of an eco-friendly alternative energy harvesting method to effectively extend the lifetime of batteries or even replace them becomes increasingly urgent. To meet this urgent need, the research project is investigating a new high-power high-efficiency microfluidic energy scavenging technology to convert mechanical energy into electricity. The proposed method can operate virtually in any situation having a pressure difference. The proposed eco-friendly method is envisioned to recover electricity from human locomotion. Human power is ubiquitous and abundant, environmentally friendly and independent of climate and environment. Such applications are of high interest to military for the usage on the battlefield or emergency and law enforcement personnel as well as civilians to power a broad range of portable electronic devices. This technology has the potential of translating into critical social and environmental benefits, such as decreased pollution due to the reduction in the amount and capacity of batteries. In partnership with local high schools, the PI has developed an already successful summer camp. Results from the project will be used in educational modules for a camp used to attract high school students to engineering at the University of Nevada in Las Vegas, which has a large Latino population. This project explores the application of super-hydrophobic surfaces for energy conversion. Using a combined theoretical and experimental approach, the central goals of the project are to: (1) fundamentally understand electrokinetics over super-hydrophobic surfaces, and (2) explore these phenomena in order to design new microfluidic energy-conversion devices with high efficiency and high power density, using super-hydrophobic surfaces. This proposed technology capitalizes on the finding that conversion efficiency and power density over a super-hydrophobic surface can be greatly enhanced compared to a traditional smooth surface. However, very little work has been reported on energy conversion over super-hydrophobic surfaces. In this project, a program integrating theory, computation and experiment is employed with the aim of bridging this fundamental knowledge gap. The PI will employ a mathematical model accounting for surface conduction and concentration polarization. These factors have been neglected in previous modeling efforts but are essential for practical applications. In addition, the PI will measure the power density over super-hydrophobic surfaces to directly test theories. In turn, the validated model will guide the experimental design as well as engineer the performance of energy conversion. The proposed coordinated theoretical and experimental approach will allow the PI to explore the rich behavior of a variety of physical phenomena (non-uniform surface conduction, concentration polarization, and associated diffusio-osmotic flows) over super-hydrophobic surfaces. Understanding of these important phenomena will surely advance the fundamental knowledge in electrokinetics and lay a solid foundation for the rational design of super-hydrophobic-surface-enabled systems. Equipped with a much improved understanding, the PI also proposes to use the microfluidic large-scale integration method to integrate thousands of channels into a microfluidic chip to demonstrate the feasibility of the conversion method in powering small electronic devices.
目前,可充电电池广泛用于为电子设备供电。电池的使用正在显着增加,以满足便携式电子设备数量和密度快速增长的需求。如此快速的增长导致了电池回收和更换方面的重大挑战,以及与电池制造和处置相关的环境问题。因此,开发一种环保的替代能源收集方法来有效延长电池的使用寿命甚至替代它们变得越来越紧迫。为了满足这一迫切需求,该研究项目正在研究一种新型大功率高效微流控能量采集技术,将机械能转化为电能。所提出的方法实际上可以在任何具有压力差的情况下操作。所提出的环保方法有望从人类运动中回收电力。人类的力量无处不在且丰富,对环境友好且不受气候和环境的影响。此类应用对于在战场上使用的军方或紧急情况和执法人员以及为各种便携式电子设备供电的平民非常感兴趣。该技术有可能转化为重要的社会和环境效益,例如由于电池数量和容量的减少而减少污染。 PI 与当地高中合作,举办了一个已经取得成功的夏令营。该项目的结果将用于一个营地的教育模块,该营地用于吸引高中生进入拉斯维加斯内华达大学工程系,该大学拥有大量拉丁裔人口。该项目探索超疏水表面在能量转换中的应用。利用理论和实验相结合的方法,该项目的中心目标是:(1)从根本上了解超疏水表面的动电学,以及(2)探索这些现象,以设计具有高效率和高效率的新型微流体能量转换装置。高功率密度,采用超疏水表面。这项提出的技术利用了这样的发现:与传统的光滑表面相比,超疏水表面的转换效率和功率密度可以大大提高。然而,关于超疏水表面能量转换的工作报道很少。在该项目中,采用了一个集理论、计算和实验于一体的程序,旨在弥合这一基本知识差距。 PI 将采用数学模型来解释表面传导和浓差极化。这些因素在以前的建模工作中被忽略,但对于实际应用至关重要。此外,PI还将测量超疏水表面的功率密度,以直接测试理论。反过来,经过验证的模型将指导实验设计并设计能量转换的性能。所提出的协调理论和实验方法将使 PI 能够探索超疏水表面上各种物理现象(非均匀表面传导、浓差极化和相关的扩散渗透流)的丰富行为。对这些重要现象的理解必将推进动电学的基础知识,并为超疏水表面系统的合理设计奠定坚实的基础。有了更大的理解,PI还提出使用微流控大规模集成方法将数千个通道集成到微流控芯片中,以证明该转换方法为小型电子设备供电的可行性。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Silica-coated metallic nanoparticle-based hierarchical super-hydrophobic surfaces fabricated by spin-coating and inverse nanotransfer printing
通过旋涂和反纳米转移印刷制备的基于二氧化硅涂层金属纳米颗粒的分级超疏水表面
  • DOI:
    10.1063/1.5098780
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Zhai, Shengjie;Zhao, Hui
  • 通讯作者:
    Zhao, Hui
The effects of electrostatic correlations on the ionic current rectification in conical nanopores
静电关联对圆锥形纳米孔离子电流整流的影响
  • DOI:
    10.1002/elps.201900127
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Alidoosti, Elaheh;Zhao, Hui
  • 通讯作者:
    Zhao, Hui
High-Efficiency Omnidirectional Broadband Light-Management Coating Using the Hierarchical Ordered-disorder Nanostructures with Ultra Mechanochemical Resistance
使用具有超机械化学抗性的分层有序无序纳米结构的高效全向宽带光管理涂层
  • DOI:
    10.1021/acsami.9b00034
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Zhai, Shengjie;Zhao, Yihong;Zhao, Hui
  • 通讯作者:
    Zhao, Hui
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hui Zhao其他文献

Correction to: Inhibitor discovery from pomegranate rind for targeting human salivary α-amylase
更正:从石榴皮中发现针对人类唾液 α-淀粉酶的抑制剂
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Jiachen Sun;Shengjie Dong;Yueting Wu;Hui Zhao;Xia Li;Wenyuan Gao
  • 通讯作者:
    Wenyuan Gao
A hybrid NoC design for cache coherence optimization for chip multiprocessors
用于芯片多处理器缓存一致性优化的混合 NoC 设计
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hui Zhao;Ohyoung Jang;W. Ding;Yuanrui Zhang;M. Kandemir;M. J. Irwin
  • 通讯作者:
    M. J. Irwin
シンポジウムの報告シンポジウムのまとめ
会议报告 会议纪要
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kosuke Tanegashima;Hui Zhao;Martha Rebbert;Igor Dawid;會田勝美
  • 通讯作者:
    會田勝美
Absence of Stress Response in Dorsal Raphe Nucleus in Modulator of Apoptosis 1-Deficient Mice
凋亡 1 缺陷调节剂小鼠中缝背核缺乏应激反应
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Hui Zhao;Nur;S. Chan;C. Tan;R. Tao;V. C. Yu;P. Wong
  • 通讯作者:
    P. Wong
Heme oxygenase-1 in pregnancy and cancer: similarities in cellular invasion, cytoprotection, angiogenesis, and immunomodulation
妊娠和癌症中的血红素加氧酶-1:细胞侵袭、细胞保护、血管生成和免疫调节方面的相似性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Hui Zhao;Maide Ozen;R. Wong;D. Stevenson
  • 通讯作者:
    D. Stevenson

Hui Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hui Zhao', 18)}}的其他基金

Collaborative Research: Self-regulated non-equilibrium assembly of chiral colloidal clusters via electrokinetic interactions
合作研究:通过动电相互作用实现手性胶体簇的自我调节非平衡组装
  • 批准号:
    2314340
  • 财政年份:
    2023
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Continuing Grant
Collaborative Research: Concentration Polarization Induced Electrokinetic Flows around dielectric Surfaces
合作研究:聚光极化引起介电表面周围的动电流
  • 批准号:
    2127852
  • 财政年份:
    2021
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Standard Grant
REU Site: Interdisciplinary Research Experience on Accelerated Deep Learning through A Hardware-Software Collaborative Approach
REU 网站:通过硬件-软件协作方法加速深度学习的跨学科研究经验
  • 批准号:
    2051062
  • 财政年份:
    2021
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Standard Grant
CAREER: Reinventing Network-on-Chips of GPU-Accelerated Systems
职业:重塑 GPU 加速系统的片上网络
  • 批准号:
    2046186
  • 财政年份:
    2021
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Tangram: Scaling into the Exascale Era with Reconfigurable Aggregated "Virtual Chips"
合作研究:SHF:小型:七巧板:通过可重构聚合“虚拟芯片”扩展到百亿亿次时代
  • 批准号:
    2008911
  • 财政年份:
    2020
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Standard Grant
Bioinspired Nanomanufacturing of Graphene-embedded Superhydrophobic Surfaces with Mechanical and Chemical Robustness
具有机械和化学稳定性的石墨烯嵌入超疏水表面的仿生纳米制造
  • 批准号:
    1911719
  • 财政年份:
    2019
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Standard Grant
Novel transport phenomena in two-dimensional crystals beyond graphene
石墨烯以外的二维晶体中的新颖输运现象
  • 批准号:
    1505852
  • 财政年份:
    2015
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Continuing Grant
CAREER: Nanoscale Ballistic Spin Transport in Semiconductors
职业:半导体中的纳米级弹道自旋输运
  • 批准号:
    0954486
  • 财政年份:
    2010
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Continuing Grant

相似国自然基金

表面胶束增敏型长寿命磷光碳点传感器对疏水性农药的可视化检测
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
阴极表面亲疏水性对含氧自由基原位生成和避免产电菌膜过度生长的影响机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
流体剪切对难浮炼焦煤表面疏水性的活化效应及机理
  • 批准号:
    51904239
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
新型响应性超润湿表面设计制备及其油水分离
  • 批准号:
    51905521
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
辅助捕收剂选择性吸附辉钼矿颗粒“棱”上的疏水机理及其协同作用研究
  • 批准号:
    51904222
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Surface modification of ceramic phosphor using hydrophobic interaction and effect on emission efficiency
利用疏水相互作用对陶瓷荧光粉进行表面改性及其对发射效率的影响
  • 批准号:
    23K04406
  • 财政年份:
    2023
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
  • 批准号:
    10741660
  • 财政年份:
    2023
  • 资助金额:
    $ 27.67万
  • 项目类别:
Structure and Function of Direct Delivery Peptides
直接递送肽的结构和功能
  • 批准号:
    10717736
  • 财政年份:
    2023
  • 资助金额:
    $ 27.67万
  • 项目类别:
An Innovative Two-Step Therapeutic Strategy to Maximize the Effect of Stem Cell Therapy for Post-Traumatic Osteoarthritis
创新的两步治疗策略可最大限度地发挥干细胞治疗创伤后骨关节炎的效果
  • 批准号:
    10643442
  • 财政年份:
    2023
  • 资助金额:
    $ 27.67万
  • 项目类别:
Structural and chemical changes between empty and full AAV capsids
空 AAV 衣壳和完整 AAV 衣壳之间的结构和化学变化
  • 批准号:
    10646613
  • 财政年份:
    2023
  • 资助金额:
    $ 27.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了