Super-Hydrophobic Surface Enabled Microfluidic Energy Conversion

超疏水表面实现微流体能量转换

基本信息

  • 批准号:
    1509866
  • 负责人:
  • 金额:
    $ 27.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Currently, rechargeable batteries are widely used to power electronic devices. The use of batteries is increasing significantly to meet the demand of the rapidly growing number and density of portable electronic devices. Such rapid growth results in major challenges in recycling and replacement of batteries, and environmental concerns related both to manufacturing and disposal of batteries. Therefore, the development of an eco-friendly alternative energy harvesting method to effectively extend the lifetime of batteries or even replace them becomes increasingly urgent. To meet this urgent need, the research project is investigating a new high-power high-efficiency microfluidic energy scavenging technology to convert mechanical energy into electricity. The proposed method can operate virtually in any situation having a pressure difference. The proposed eco-friendly method is envisioned to recover electricity from human locomotion. Human power is ubiquitous and abundant, environmentally friendly and independent of climate and environment. Such applications are of high interest to military for the usage on the battlefield or emergency and law enforcement personnel as well as civilians to power a broad range of portable electronic devices. This technology has the potential of translating into critical social and environmental benefits, such as decreased pollution due to the reduction in the amount and capacity of batteries. In partnership with local high schools, the PI has developed an already successful summer camp. Results from the project will be used in educational modules for a camp used to attract high school students to engineering at the University of Nevada in Las Vegas, which has a large Latino population. This project explores the application of super-hydrophobic surfaces for energy conversion. Using a combined theoretical and experimental approach, the central goals of the project are to: (1) fundamentally understand electrokinetics over super-hydrophobic surfaces, and (2) explore these phenomena in order to design new microfluidic energy-conversion devices with high efficiency and high power density, using super-hydrophobic surfaces. This proposed technology capitalizes on the finding that conversion efficiency and power density over a super-hydrophobic surface can be greatly enhanced compared to a traditional smooth surface. However, very little work has been reported on energy conversion over super-hydrophobic surfaces. In this project, a program integrating theory, computation and experiment is employed with the aim of bridging this fundamental knowledge gap. The PI will employ a mathematical model accounting for surface conduction and concentration polarization. These factors have been neglected in previous modeling efforts but are essential for practical applications. In addition, the PI will measure the power density over super-hydrophobic surfaces to directly test theories. In turn, the validated model will guide the experimental design as well as engineer the performance of energy conversion. The proposed coordinated theoretical and experimental approach will allow the PI to explore the rich behavior of a variety of physical phenomena (non-uniform surface conduction, concentration polarization, and associated diffusio-osmotic flows) over super-hydrophobic surfaces. Understanding of these important phenomena will surely advance the fundamental knowledge in electrokinetics and lay a solid foundation for the rational design of super-hydrophobic-surface-enabled systems. Equipped with a much improved understanding, the PI also proposes to use the microfluidic large-scale integration method to integrate thousands of channels into a microfluidic chip to demonstrate the feasibility of the conversion method in powering small electronic devices.
当前,可充电电池广泛用于电动设备。电池的使用正在大大增加,以满足便携式电子设备的快速增长数量和密度的需求。这种快速增长导致电池回收和替代的重大挑战,以及与电池制造和处置有关的环境问题。因此,开发环保替代能源收集方法有效地延长电池的寿命,甚至更换电池的寿命变得越来越紧迫。为了满足这一迫切需求,该研究项目正在研究一种新的高功率高效微流体能量清除技术,以将机械能量转换为电力。所提出的方法几乎可以在具有压力差的任何情况下运行。设想提出的环保方法是从人类运动中收回电力。人类的力量无处不在,丰富,环保,并且独立于气候和环境。对于战场,紧急情况和执法人员的使用以及平民,此类应用非常感兴趣,以便为广泛的便携式电子设备提供动力。这项技术具有转化为关键的社会和环境利益,例如由于电池的数量和能力降低而导致污染减少。与当地高中合作,PI开发了一个已经成功的夏令营。该项目的结果将用于一个营地的教育模块中,用于吸引高中学生在拉斯维加斯内华达大学的工程中,该大学的拉丁裔人口众多。该项目探讨了超血液表面在能量转化中的应用。使用合并的理论和实验方法,该项目的核心目标是:(1)从根本上理解超级恐惧症表面上的电动动力学,并且(2)探索这些现象,以设计新的微流体能量转换设备,以高效和高功率密度,使用超高含量的高度密度,并使用超级高滴虫层面。这项提出的技术利用了以下发现,即与传统的光滑表面相比,超级吞噬表面上的转换效率和功率密度可以大大增强。但是,关于超吞噬表面上能量转化的工作很少。在这个项目中,采用了一个集成理论,计算和实验的程序,目的是弥合这一基本知识差距。 PI将采用数学模型来解释表面传导和浓度极化。这些因素在以前的建模工作中被忽略了,但对于实际应用至关重要。此外,PI将测量超吞噬表面上的功率密度直接测试理论。反过来,经过验证的模型将指导实验设计,并设计能量转换的性能。提出的协调理论和实验方法将使PI能够探索超超吞噬表面上各种物理现象(不均匀的表面传导,浓度极化和相关的扩散性渗透流)的丰富行为。了解这些重要现象肯定会推进电动学方面的基本知识,并为超级恐惧症的系统的合理设计奠定了坚实的基础。 PI配备了大大改善的理解,还建议使用微流体大规模整合方法将数千个通道整合到微流体芯片中,以证明转换方法在为小型电子设备提供动力方面的可行性。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Silica-coated metallic nanoparticle-based hierarchical super-hydrophobic surfaces fabricated by spin-coating and inverse nanotransfer printing
通过旋涂和反纳米转移印刷制备的基于二氧化硅涂层金属纳米颗粒的分级超疏水表面
  • DOI:
    10.1063/1.5098780
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Zhai, Shengjie;Zhao, Hui
  • 通讯作者:
    Zhao, Hui
The effects of electrostatic correlations on the ionic current rectification in conical nanopores
静电关联对圆锥形纳米孔离子电流整流的影响
  • DOI:
    10.1002/elps.201900127
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Alidoosti, Elaheh;Zhao, Hui
  • 通讯作者:
    Zhao, Hui
High-Efficiency Omnidirectional Broadband Light-Management Coating Using the Hierarchical Ordered-disorder Nanostructures with Ultra Mechanochemical Resistance
使用具有超机械化学抗性的分层有序无序纳米结构的高效全向宽带光管理涂层
  • DOI:
    10.1021/acsami.9b00034
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Zhai, Shengjie;Zhao, Yihong;Zhao, Hui
  • 通讯作者:
    Zhao, Hui
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hui Zhao其他文献

Correction to: Inhibitor discovery from pomegranate rind for targeting human salivary α-amylase
更正:从石榴皮中发现针对人类唾液 α-淀粉酶的抑制剂
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Jiachen Sun;Shengjie Dong;Yueting Wu;Hui Zhao;Xia Li;Wenyuan Gao
  • 通讯作者:
    Wenyuan Gao
A hybrid NoC design for cache coherence optimization for chip multiprocessors
用于芯片多处理器缓存一致性优化的混合 NoC 设计
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hui Zhao;Ohyoung Jang;W. Ding;Yuanrui Zhang;M. Kandemir;M. J. Irwin
  • 通讯作者:
    M. J. Irwin
シンポジウムの報告シンポジウムのまとめ
会议报告 会议纪要
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kosuke Tanegashima;Hui Zhao;Martha Rebbert;Igor Dawid;會田勝美
  • 通讯作者:
    會田勝美
Absence of Stress Response in Dorsal Raphe Nucleus in Modulator of Apoptosis 1-Deficient Mice
凋亡 1 缺陷调节剂小鼠中缝背核缺乏应激反应
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Hui Zhao;Nur;S. Chan;C. Tan;R. Tao;V. C. Yu;P. Wong
  • 通讯作者:
    P. Wong
Heme oxygenase-1 in pregnancy and cancer: similarities in cellular invasion, cytoprotection, angiogenesis, and immunomodulation
妊娠和癌症中的血红素加氧酶-1:细胞侵袭、细胞保护、血管生成和免疫调节方面的相似性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Hui Zhao;Maide Ozen;R. Wong;D. Stevenson
  • 通讯作者:
    D. Stevenson

Hui Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hui Zhao', 18)}}的其他基金

Collaborative Research: Self-regulated non-equilibrium assembly of chiral colloidal clusters via electrokinetic interactions
合作研究:通过动电相互作用实现手性胶体簇的自我调节非平衡组装
  • 批准号:
    2314340
  • 财政年份:
    2023
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Continuing Grant
Collaborative Research: Concentration Polarization Induced Electrokinetic Flows around dielectric Surfaces
合作研究:聚光极化引起介电表面周围的动电流
  • 批准号:
    2127852
  • 财政年份:
    2021
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Standard Grant
REU Site: Interdisciplinary Research Experience on Accelerated Deep Learning through A Hardware-Software Collaborative Approach
REU 网站:通过硬件-软件协作方法加速深度学习的跨学科研究经验
  • 批准号:
    2051062
  • 财政年份:
    2021
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Standard Grant
CAREER: Reinventing Network-on-Chips of GPU-Accelerated Systems
职业:重塑 GPU 加速系统的片上网络
  • 批准号:
    2046186
  • 财政年份:
    2021
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Tangram: Scaling into the Exascale Era with Reconfigurable Aggregated "Virtual Chips"
合作研究:SHF:小型:七巧板:通过可重构聚合“虚拟芯片”扩展到百亿亿次时代
  • 批准号:
    2008911
  • 财政年份:
    2020
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Standard Grant
Bioinspired Nanomanufacturing of Graphene-embedded Superhydrophobic Surfaces with Mechanical and Chemical Robustness
具有机械和化学稳定性的石墨烯嵌入超疏水表面的仿生纳米制造
  • 批准号:
    1911719
  • 财政年份:
    2019
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Standard Grant
Novel transport phenomena in two-dimensional crystals beyond graphene
石墨烯以外的二维晶体中的新颖输运现象
  • 批准号:
    1505852
  • 财政年份:
    2015
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Continuing Grant
CAREER: Nanoscale Ballistic Spin Transport in Semiconductors
职业:半导体中的纳米级弹道自旋输运
  • 批准号:
    0954486
  • 财政年份:
    2010
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Continuing Grant

相似国自然基金

疏水表面水解离诱导高效电还原CO2的研究
  • 批准号:
    22309116
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
表面积灰对超疏水换热器结霜特性的影响及融霜排水除灰机制研究
  • 批准号:
    52376014
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
宽过冷度范围内仿生亲疏水复合类液体表面强化滴状冷凝传热机理研究
  • 批准号:
    52305220
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
表面超疏水化“Cu2-xS/聚氨酯气凝胶”的构筑及其降低海水蒸发焓机制研究
  • 批准号:
    52305196
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
微重力下梯级微孔结构-亲疏水图案强化低表面张力工质滴状冷凝传热的机理研究
  • 批准号:
    52306075
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Surface modification of ceramic phosphor using hydrophobic interaction and effect on emission efficiency
利用疏水相互作用对陶瓷荧光粉进行表面改性及其对发射效率的影响
  • 批准号:
    23K04406
  • 财政年份:
    2023
  • 资助金额:
    $ 27.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
  • 批准号:
    10741660
  • 财政年份:
    2023
  • 资助金额:
    $ 27.67万
  • 项目类别:
Structure and Function of Direct Delivery Peptides
直接递送肽的结构和功能
  • 批准号:
    10717736
  • 财政年份:
    2023
  • 资助金额:
    $ 27.67万
  • 项目类别:
An Innovative Two-Step Therapeutic Strategy to Maximize the Effect of Stem Cell Therapy for Post-Traumatic Osteoarthritis
创新的两步治疗策略可最大限度地发挥干细胞治疗创伤后骨关节炎的效果
  • 批准号:
    10643442
  • 财政年份:
    2023
  • 资助金额:
    $ 27.67万
  • 项目类别:
Structural and chemical changes between empty and full AAV capsids
空 AAV 衣壳和完整 AAV 衣壳之间的结构和化学变化
  • 批准号:
    10646613
  • 财政年份:
    2023
  • 资助金额:
    $ 27.67万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了