Realizing Exotic Quantum States with Cold Atoms
用冷原子实现奇异的量子态
基本信息
- 批准号:1508300
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2018-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Simple rules can lead to complicated behavior. This maxim is particularly true in quantum mechanics, the theory describing microscopic objects such as atoms. Tools of theoretical physics will be used to determine how such exotic behavior emerges in ultracold atomic gases. While these studies may potentially lead to novel applications in areas such as quantum computing, metrology, or materials science, the direct goal of this set of projects is to test fundamental concepts about emergent physics in quantum systems. There are three disconnected lines of research. First, when atoms are confined to tight tubes they behave differently than atoms which are free to move in three dimensions. The cross-over between this exotic one-dimensional state and more conventional three-dimensional physics will be studied. Second, an exotic state was recently discovered in electronic systems. Dubbed "topological insulators," these materials have insulating bulks, but conducting surface modes. Moreover the surface modes behave in unconventional ways. The cold atom analogs of these systems will be studied. Finally, the cold atom analogs of electron systems with magnetic impurities will be studied. Metals with magnetic impurities display a number of important phenomena, some of which are not completely understood. The goal is to produce a controlled system for testing various theoretical ideas.This project has three research directions which will advance understanding of cold atoms, and many-body physics. These are chosen to dovetail with recent experimental and theoretical development. The first research direction will involve the dimensional crossover between 1D and 3D in a superfluid partially polarized Fermi gas. The 1D system displays a fluctuating version of the FFLO state. There is hope that true long-range FFLO order can be stabilized for intermediate confinement. The PI will use the inhomogeneous Bogoliubov-de-Gennes equations to study this crossover. The second research direction will involve lattice defects in an artificial atomic Chern insulator. There is a potentially transformitive conjecture that such defects are related to the fractional quantum Hall effect. Much of this physics can be revealed by numerical studies of the single-particle Schrodinger equation. Even if the conjecture is incorrect, the study will teach us about these defects, which are important in solid state systems. The third research project will involve attempts to see Kondo physics in cold atoms. By studying this problem in cold atoms, the goal is to obtain a more direct insight into this exotic physics. Greens function techniques will be used for this latter project.
简单的规则可能导致复杂的行为。 这一格言在量子力学中尤其正确,量子力学是描述原子等微观物体的理论。 理论物理学工具将用于确定超冷原子气体中如何出现这种奇异行为。 虽然这些研究可能会在量子计算、计量学或材料科学等领域带来新的应用,但这组项目的直接目标是测试量子系统中新兴物理的基本概念。存在三个互不相关的研究方向。首先,当原子被限制在紧密的管子中时,它们的行为与在三维空间中自由移动的原子不同。我们将研究这种奇特的一维状态和更传统的三维物理之间的交叉。其次,最近在电子系统中发现了一种奇异状态。 这些材料被称为“拓扑绝缘体”,具有绝缘体,但具有导电表面模式。 此外,表面模式的行为方式非常规。 将研究这些系统的冷原子类似物。最后,将研究具有磁性杂质的电子系统的冷原子模拟。 含有磁性杂质的金属表现出许多重要的现象,其中一些尚未完全了解。 目标是生产一个用于测试各种理论思想的受控系统。该项目有三个研究方向,将增进对冷原子和多体物理学的理解。 选择这些是为了与最近的实验和理论发展相吻合。 第一个研究方向将涉及超流体部分极化费米气体中 1D 和 3D 之间的维度交叉。 一维系统显示 FFLO 状态的波动版本。 对于中间限制,真正的远程 FFLO 秩序有望稳定下来。 PI 将使用非齐次 Bogoliubov-de-Gennes 方程来研究这种交叉。 第二个研究方向将涉及人造原子陈绝缘体中的晶格缺陷。 有一个潜在的变革性猜想认为,此类缺陷与分数量子霍尔效应有关。 这种物理现象的大部分可以通过单粒子薛定谔方程的数值研究来揭示。 即使猜想是错误的,这项研究也会让我们了解这些缺陷,这些缺陷在固态系统中很重要。 第三个研究项目将尝试在冷原子中观察近藤物理学。通过在冷原子中研究这个问题,目标是更直接地了解这种奇异的物理现象。 格林函数技术将用于后一个项目。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erich Mueller其他文献
Analysis of secretory group II phospholipase A2 expression in human aortic tissue in dependence on the degree of atherosclerosis.
分析人主动脉组织中分泌型 II 族磷脂酶 A2 的表达与动脉粥样硬化程度的关系。
- DOI:
10.1016/s0021-9150(99)00045-3 - 发表时间:
1999 - 期刊:
- 影响因子:5.3
- 作者:
A. Schiering;M. Menschikowski;Erich Mueller;W. Jaross - 通讯作者:
W. Jaross
An augmented virtuality approach to 3D videoconferencing
3D 视频会议的增强虚拟方法
- DOI:
10.1109/ismar.2003.1240725 - 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
H. Regenbrecht;Claudia Ott;M. Wagner;T. Lum;P. Kohler;W. Wilke;Erich Mueller - 通讯作者:
Erich Mueller
Using Augmented Virtuality for Remote Collaboration
使用增强虚拟技术进行远程协作
- DOI:
10.1162/1054746041422334 - 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
H. Regenbrecht;T. Lum;P. Kohler;Claudia Ott;M. Wagner;W. Wilke;Erich Mueller - 通讯作者:
Erich Mueller
Role of intracellular Ca2+ sequestration in β-adrenergic relaxation of a smooth muscle
细胞内 Ca2+ 隔离在平滑肌 β-肾上腺素能松弛中的作用
- DOI:
10.1038/281682a0 - 发表时间:
1979 - 期刊:
- 影响因子:64.8
- 作者:
Erich Mueller;C. Breemen - 通讯作者:
C. Breemen
Expression of secretory group IIA phospholipase A(2) in relation to the presence of microbial agents, macrophage infiltrates, and transcripts of proinflammatory cytokines in human aortic tissues.
分泌型 IIA 磷脂酶 A(2) 的表达与人主动脉组织中微生物制剂、巨噬细胞浸润和促炎细胞因子转录物的存在有关。
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
M. Menschikowski;Andrea Rosner;R. Eckey;Erich Mueller;R. Koch;W. Jaross - 通讯作者:
W. Jaross
Erich Mueller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erich Mueller', 18)}}的其他基金
Collaborative Research: The role of temporally varying specific storage on confined aquifer dynamics
合作研究:随时间变化的特定存储对承压含水层动态的作用
- 批准号:
2242366 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Theoretical AMO Studies of Non-Equilibrium and Emergent Many-Body Quantum Physics
非平衡和新兴多体量子物理的理论 AMO 研究
- 批准号:
2110250 - 财政年份:2021
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Theoretical AMO Studies for Enhanced Understanding and Control of Emergent Quantum Physics
增强对新兴量子物理的理解和控制的理论 AMO 研究
- 批准号:
1806357 - 财政年份:2018
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Many Body Physics of Cold Atomic Gases
冷原子气体的许多身体物理学
- 批准号:
0758104 - 财政年份:2008
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Theoretical Studies of Rotating Trapped Atomic Gases
旋转俘获原子气体的理论研究
- 批准号:
0456261 - 财政年份:2005
- 资助金额:
$ 24万 - 项目类别:
Continuing grant
Calcification by Hermatypic Corals: Regulation of the Calcium Pathway
造形珊瑚的钙化:钙途径的调节
- 批准号:
9415936 - 财政年份:1995
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
CRB: Optimization Strategies for Reef Restoration Using Cultured Hermatypic Corals
CRB:使用培养的造礁珊瑚恢复珊瑚礁的优化策略
- 批准号:
9596271 - 财政年份:1995
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
CRB: Optimization Strategies for Reef Restoration Using Cultured Hermatypic Corals
CRB:使用培养的造形珊瑚进行珊瑚礁恢复的优化策略
- 批准号:
9424568 - 财政年份:1995
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Calcification by Hermatypic Corals: Regulation of the Calcium Pathway
造形珊瑚的钙化:钙途径的调节
- 批准号:
9596228 - 财政年份:1995
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
相似海外基金
Comprehensive understanding of the quantum criticality yielding the exotic superconductivity and the non-Fermi-liquid behavior
全面了解产生奇异超导性和非费米液体行为的量子临界性
- 批准号:
23K03315 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ExpandQISE: Track 2: A Quantum Science Education and Research Program for HBCUs: Exotic Physics and Applications of Solid-State Qubits
ExpandQISE:轨道 2:HBCU 的量子科学教育和研究计划:奇异物理学和固态量子位的应用
- 批准号:
2329067 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Fermiology and exotic quantum phases of ultra-quantum-materials
超量子材料的费米学和奇异量子相
- 批准号:
2742831 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Studentship
Exotic physics in quantum Hall and spin liquid systems
量子霍尔和自旋液体系统中的奇异物理
- 批准号:
RGPIN-2020-04688 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Individual
Topology, interactions, and disorder in exotic quantum materials
奇异量子材料中的拓扑、相互作用和无序
- 批准号:
RGPAS-2020-00064 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Discovery Grants Program - Accelerator Supplements