Multiscale Modeling of Chiral Self-assemblies of Superparamagnetic Nanoparticles

超顺磁性纳米颗粒手性自组装的多尺度建模

基本信息

  • 批准号:
    1506886
  • 负责人:
  • 金额:
    $ 26.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL SUMMARYThis award supports computational and theoretical research and education aimed at understanding cooperative mechanisms by which magnetic materials self-assemble from nanoscale colloidal components with multiple complex interactions and in the presence of magnetic, electric, and optical fields. Concise characterization and description of conditions underlying the stabilization of a rich spectrum of self-assembled materials will provide information necessary for their reproducible preparation. Dramatic progress in the area of materials formed by self-assembled nanoscale components can proceed only through a solid understanding of all underlying principles and microscopic phenomena. The research involves developing and applying computational tools for modeling of self-assembled materials, which will be shared with the broader computational materials science community. Activities associated with this research will provide rich educational experiences for graduate and undergraduate students in advanced materials theory and modeling techniques. Through collaboration with experimentalists, this research will iteratively proceed towards a deep understanding of materials properties. In this integrated experimental and computational approach, the students will gain the necessary skills to design materials and technologies aiming at development of novel devices based on these materials.TECHNICAL SUMMARYThis award supports computational and theoretical research and education of magnetic materials formed by self-assembled superparamagnetic nanoparticles. The research necessitates development of multiscale modeling tools in the PI's group, in particular, efficient Monte Carlo codes able to describe large scale systems of interacting nanoparticles, where cooperative forces acting between the constituents will be parametrized by analytical calculations using known laws, atomistic molecular dynamics simulations, and estimates of coupling strengths present in the studied systems under dynamical conditions formed during the self-assembly. These studies will focus on clarifying the roles played during the self-assembly by forces acting between the nanoparticles at different length scales, the effects of choosing different materials, sizes and shapes of the nanoparticles, their ligands and solvents, overall charging, and external magnetic, electric, and optical fields. This modeling approach should reveal the spatial and magnetic structures of nanoparticle chains, ribbons, stripes, clusters, and helices, and the origins of their arrangements observed in experiments.Through development of novel modeling methods, the project will advance the knowledge of experimentally prepared materials based on self-assembled nanoscale components with complex interactions leading to numerous possible final structures tunable by external fields. These materials will form a rich platform for future generations of devices with numerous applications. Activities associated with this research will provide rich educational experiences for graduate and undergraduate students in advanced materials theory and modeling techniques. Through collaboration with experimentalists, this research will iteratively proceed towards a deep understanding of materials properties.
非技术摘要该奖项支持计算和理论研究和教育,旨在了解磁性材料在磁、电和光场存在下从具有多种复杂相互作用的纳米级胶体成分自组装的合作机制。对丰富的自组装材料的稳定条件的简明表征和描述将为它们的可重复制备提供必要的信息。只有充分理解所有基本原理和微观现象,自组装纳米级组件形成的材料领域才能取得巨大进展。该研究涉及开发和应用用于自组装材料建模的计算工具,这些工具将与更广泛的计算材料科学界共享。与这项研究相关的活动将为研究生和本科生提供先进材料理论和建模技术方面的丰富教育经验。通过与实验学家的合作,这项研究将迭代地深入了解材料特性。在这种综合实验和计算方法中,学生将获得设计材料和技术所需的技能,旨在开发基于这些材料的新型器件。技术摘要该奖项支持自组装超顺磁形成的磁性材料的计算和理论研究以及教育纳米颗粒。该研究需要 PI 小组开发多尺度建模工具,特别是能够描述相互作用纳米粒子的大规模系统的高效蒙特卡罗代码,其中成分之间作用的合作力将通过使用已知定律、原子分子动力学的分析计算来参数化在自组装过程中形成的动态条件下,对所研究的系统中存在的耦合强度进行模拟和估计。这些研究将重点阐明自组装过程中不同长度尺度纳米粒子之间作用力所起的作用,选择不同材料、纳米粒子尺寸和形状、其配体和溶剂、整体充电和外部磁性的影响。 、电学和光学领域。这种建模方法应揭示纳米粒子链、带、条、簇和螺旋的空间和磁性结构,以及实验中观察到的它们排列的起源。通过开发新颖的建模方法,该项目将增进对实验制备材料的了解基于具有复杂相互作用的自组装纳米级组件,导致许多可能的最终结构可通过外部场调节。这些材料将为具有众多应用的未来几代设备形成一个丰富的平台。与这项研究相关的活动将为研究生和本科生提供先进材料理论和建模技术方面的丰富教育经验。通过与实验学家的合作,这项研究将迭代地深入了解材料特性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Petr Kral其他文献

Petr Kral的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Petr Kral', 18)}}的其他基金

Collaborative Research: Integrative Adaptation of Dendrimer-peptide Conjugates for Cancer Immunotherapy
合作研究:树状聚合物-肽缀合物对癌症免疫治疗的综合适应
  • 批准号:
    2212123
  • 财政年份:
    2022
  • 资助金额:
    $ 26.69万
  • 项目类别:
    Continuing Grant
Atomistic Simulations of Nanoparticle Self-assembly: Ionic Solutions, Solvent Interfaces, and Electric Fields
纳米粒子自组装的原子模拟:离子溶液、溶剂界面和电场
  • 批准号:
    1309765
  • 财政年份:
    2013
  • 资助金额:
    $ 26.69万
  • 项目类别:
    Standard Grant
Multiscale Modeling of Molecular Transport in Graphene Nanopores and Nanotubes
石墨烯纳米孔和纳米管中分子传输的多尺度建模
  • 批准号:
    0932812
  • 财政年份:
    2009
  • 资助金额:
    $ 26.69万
  • 项目类别:
    Standard Grant

相似国自然基金

定制亲疏油图案与仿生微造型耦合的复合沟槽阵列表面润滑增效机理及应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
几何造型与机器学习融合的图像数据拟合问题研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
产能共享背景下的制造型企业运营决策研究:基于信息共享与数据质量的视角
  • 批准号:
    72271252
  • 批准年份:
    2022
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
构造型深部岩体动力灾害的孕育和发生全过程机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
盾构主轴承激光微造型协同相变硬化的抗疲劳机理及主动设计
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

鋼構造部材の強振動繰返し履歴下での保有性能解明と終局性能統合型評価手法の確立
阐明钢结构构件在重复强振动历史下的性能并建立最终性能综合评价方法
  • 批准号:
    24H00347
  • 财政年份:
    2024
  • 资助金额:
    $ 26.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Harnessing Atropisomerism in beta-Carbolines for the Discovery of New Reactions and Small Molecule Probes
利用 β-咔啉中的阻转异构现象来发现新反应和小分子探针
  • 批准号:
    10730343
  • 财政年份:
    2023
  • 资助金额:
    $ 26.69万
  • 项目类别:
McKibben型人工筋肉を用いて心臓の構造を構築しポンプ機能の再現を目指す
旨在通过使用 McKibben 型人造肌肉构建心脏结构来重现泵功能
  • 批准号:
    22K08958
  • 财政年份:
    2022
  • 资助金额:
    $ 26.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非線形挙動に対するトポロジー最適設計の新展開:統計的推論と加速最適化法を軸として
非线性行为拓扑优化设计新进展:关注统计推断和加速优化方法
  • 批准号:
    21K04351
  • 财政年份:
    2021
  • 资助金额:
    $ 26.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical study of topological photonics based on ordered structures of chiral liquid crystals
基于手性液晶有序结构的拓扑光子学理论研究
  • 批准号:
    21H01049
  • 财政年份:
    2021
  • 资助金额:
    $ 26.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了