EAGER: Novel photoacoustic sensor using piezoresistive GaN microcantilever

EAGER:使用压阻式 GaN 微悬臂梁的新型光声传感器

基本信息

  • 批准号:
    1500007
  • 负责人:
  • 金额:
    $ 15.11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-10-15 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

The objective of the EAGER research is to explore the feasibility of developing a novel photoacoustic chemical and biological sensor utilizing vacuum enclosed piezoresistive GaN microcantilever as a highly sensitive ultrasonic sensing element. The sensor will be utilized to perform detection in both air and liquid media and can potentially offer: (i) detection of surface adsorbed or deposited analytes at femtogram level with high specificity, and (ii) unique label-free detection of bio-analytes in a liquid medium. Ultra high sensitivity of the sensor will be attained using a resonant GaN microcantilever enclosed in vacuum, with integrated AlGaN/GaN heterostructure field effect transistor as a highly sensitive deflection transducer. To attain the basic objective of this project, the following tasks will be performed:(i) Design of the photoacoustic sensor through theoretical modeling and finite element simulations; (ii) Fabrication of the piezoresistive microcantilever and integration of microfluidic channels; (iii) Packaging and electromechanical characterization of the sensor; and (iv) Performance evaluation of the sensor for analyte detection in air and liquid media Piezoresistive GaN microcantilevers will be fabricated using standard photolithographic process and packaged in high vacuum to achieve high resonance quality factor. For detection in air, surface deposited or adsorbed analyte near the cantilever base will be exposed to IR radiation to perform highly sensitive and selective detection, based on photoacoustic waves generated in solid. For detection in liquid, a PDMS based analyte reservoir connected to microfluidic channels will be patterned near the cantilever base, which will allow analyte flow and combined spectroscopic and multimodal detection of blood cells. The fabrication of the microcantilever sensors will be performed at the Georgia Tech Nanofabrication Facility, while the sensor packaging will be done in the PI's lab at USC. Intellectual Merit:The proposed EAGER research will focus on validating novel sensing concepts that can lead to the development of high-performance and versatile sensors with much superior characteristics compared to the state-of-the-art sensing technologies for analytes in air and liquid media. Firstly, the proposed piezoresistive microcantilever sensors is expected to exhibit orders of magnitude higher sensitivity compared to the state-of-the-art Si cantilevers due to the unique piezoelectric properties of III-V Nitride semiconductors. Secondly, the innovative concept of vacuum enclosure of the resonant microcantilever sensor coupled with photoacosutic sensing, will further enhance the sensitivity by orders of magnitude due to quality factor enhancement, while completely eliminating cantilever degradation, which is a major challenge for cantilever sensors utilizing functionalization layers for detection. Thirdly, integration of microfluidic channels and functionalization layers to concentrate the analytes near the cantilever base will minimize signal loss, and tremendously increases signal-to-noise ratio, thereby eliminating the need for acoustic focusing and confinement using a macroscopic cell, which is a significant drawback for current state-of-the-art photoacoustic sensors. Overall, the EAGER research can have a transformative impact on the science and technology of piezoresistive cantilever sensors and photoacoustic sensing methodologies, spurring aggressive development of next generation of miniaturized and high performance photoacoustic sensors.Broader Impacts:This highly interdisciplinary project is anticipated to result in the development of novel photoacoustic sensors with potential applications in the diverse fields of defense, homeland security, environmental monitoring, drug discovery, implantable sensors, and disease diagnosis and prognosis. As a part of the educational and outreach activities, the PI would involve at least one undergraduate and one high school student to work on this project every year throughout its duration. Participation of the project activities would provide broad interdisciplinary training of the graduate student involved. The PI would integrate research results in a graduate course, and disseminate them through conference participation and various websites.
EAGER研究的目的是探索利用真空封闭压阻GaN微悬臂梁作为高灵敏度超声波传感元件开发新型光声化学和生物传感器的可行性。该传感器将用于在空气和液体介质中进行检测,并有可能提供:(i) 以飞克级的高特异性检测表面吸附或沉积的分析物,以及 (ii) 对生物分析物进行独特的无标记检测。液体介质。该传感器的超高灵敏度将通过封闭在真空中的谐振 GaN 微悬臂梁以及集成 AlGaN/GaN 异质结构场效应晶体管作为高灵敏度偏转传感器来实现。为了实现该项目的基本目标,将执行以下任务:(i)通过理论建模和有限元模拟设计光声传感器; (ii) 压阻微悬臂梁的制造和微流体通道的集成; (iii) 传感器的封装和机电特性; (iv) 用于空气和液体介质中分析物检测的传感器的性能评估压阻式 GaN 微悬臂梁将使用标准光刻工艺制造并在高真空中封装,以实现高谐振品质因数。对于空气中的检测,悬臂底座附近的表面沉积或吸附的分析物将暴露于红外辐射,以基于固体中产生的光声波执行高灵敏度和选择性检测。对于液体检测,连接到微流体通道的基于 PDMS 的分析物储存器将在悬臂底座附近形成图案,这将允许分析物流动以及血细胞的组合光谱和多模式检测。微悬臂梁传感器的制造将在佐治亚理工学院纳米制造工厂进行,而传感器的封装将在南加州大学的 PI 实验室中完成。 智力优势:拟议的 EAGER 研究将侧重于验证新颖的传感概念,这些概念可以导致高性能和多功能传感器的开发,与空气和液体介质中分析物的最先进的传感技术相比,这些传感器具有更优越的特性。首先,由于 III-V 氮化物半导体独特的压电特性,与最先进的硅悬臂梁相比,所提出的压阻微悬臂梁传感器预计将表现出高几个数量级的灵敏度。其次,谐振微悬臂梁传感器的真空封装创新概念与光声传感相结合,由于品质因数的增强,将进一步将灵敏度提高几个数量级,同时完全消除悬臂梁退化,这是利用功能层的悬臂梁传感器面临的主要挑战用于检测。第三,微流体通道和功能化层的集成将分析物集中在悬臂基座附近,将最大限度地减少信号损失,并极大地提高信噪比,从而消除使用宏观细胞进行声聚焦和限制的需要,这是一个重要的技术。当前最先进的光声传感器的缺点。总体而言,EAGER 研究可以对压阻悬臂梁传感器和光声传感方法的科学技术产生变革性影响,刺激下一代小型化和高性能光声传感器的积极发展。更广泛的影响:这个高度跨学科的项目预计将产生开发新型光声传感器,在国防、国土安全、环境监测、药物发现、植入式传感器以及疾病诊断和预后等各个领域具有潜在的应用。作为教育和推广活动的一部分,项目负责人每年将至少邀请一名本科生和一名高中生参与该项目。参与项目活动将为所涉及的研究生提供广泛的跨学科培训。 PI 将把研究成果整合到研究生课程中,并通过参加会议和各种网站进行传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Goutam Koley其他文献

Temperature Dependent Schottky Contact Behavior of Iron (Fe) Doped $\beta$-Ga2O3
铁 (Fe) 掺杂 $eta$-Ga2O3 随温度变化的肖特基接触行为
  • DOI:
    10.1109/southeastcon52093.2024.10500293
  • 发表时间:
    2024-03-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. H. Prio;D. Gajula;L. Muthusamy;Rackley Wren;Jacob Leach;Goutam Koley
  • 通讯作者:
    Goutam Koley
VO2 Thin Film Enabled Free Space Modulation of Infrared Light Using Pulsed Electric Field
VO2 薄膜利用脉冲电场实现红外光的自由空间调制
  • DOI:
    10.1021/acsphotonics.4c00489
  • 发表时间:
    2024-04-26
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Samee Azad;D. Gajula;M. H. Prio;L. Muthusamy;J. K. Miller;Eric G. Johnson;Goutam Koley
  • 通讯作者:
    Goutam Koley
Impact of oxygen plasma treatment on carrier transport and molecular adsorption in graphene
  • DOI:
    10.1039/c9nr02251a
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Hongmei Li;Austin Singh;Ferhat Bayram;Anthony S. Childress;Apparao M. Rao;Goutam Koley
  • 通讯作者:
    Goutam Koley
Direct measurement of K+ion efflux from neuronal cells using a graphene-based ion sensitive field effect transistor
  • DOI:
    10.1039/d0ra05222a
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Hongmei Li;Kenneth B Walsh;Ferhat Bayram;Goutam Koley
  • 通讯作者:
    Goutam Koley

Goutam Koley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Goutam Koley', 18)}}的其他基金

PFI-TT: High Performance Pressure Sensors for High Temperature Operations
PFI-TT:适用于高温操作的高性能压力传感器
  • 批准号:
    2234512
  • 财政年份:
    2023
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant
Novel microcantilever sensor using plasmonically enhanced nonlinearity
利用等离子体增强非线性的新型微悬臂梁传感器
  • 批准号:
    1809891
  • 财政年份:
    2018
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant
PFI:AIR - TT: Novel Low-power III-Nitride Heater Cantilever Based Selective VOC Sensor
PFI:AIR - TT:新型低功耗 III 族氮化物加热器悬臂梁选择性 VOC 传感器
  • 批准号:
    1602006
  • 财政年份:
    2016
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant
Novel Graphene-based Label-free Biosensor Array for Smart Health and Drug Discovery
用于智能健康和药物发现的新型基于石墨烯的无标记生物传感器阵列
  • 批准号:
    1606882
  • 财政年份:
    2016
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant
CAREER: InN nanowire based multifunctional nanocantilever sensors
职业:基于 InN 纳米线的多功能纳米悬臂梁传感器
  • 批准号:
    1559711
  • 财政年份:
    2015
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant
Air Option 1: Technology Translation - Functionalized III-V Nitride based Microelectromechanical Sensors for Neutron Detection
Air 选项 1:技术转化 - 用于中子检测的功能化 III-V 氮化物基微机电传感器
  • 批准号:
    1512342
  • 财政年份:
    2014
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant
EAGER: Novel photoacoustic sensor using piezoresistive GaN microcantilever
EAGER:使用压阻式 GaN 微悬臂梁的新型光声传感器
  • 批准号:
    1348166
  • 财政年份:
    2013
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant
Air Option 1: Technology Translation - Functionalized III-V Nitride based Microelectromechanical Sensors for Neutron Detection
Air 选项 1:技术转化 - 用于中子检测的功能化 III-V 氮化物基微机电传感器
  • 批准号:
    1343437
  • 财政年份:
    2013
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant
Nanoelectromechanical uncooled infrared sensor using epitaxial graphene
使用外延石墨烯的纳米机电非制冷红外传感器
  • 批准号:
    1029346
  • 财政年份:
    2010
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Continuing Grant
CAREER: InN nanowire based multifunctional nanocantilever sensors
职业:基于 InN 纳米线的多功能纳米悬臂梁传感器
  • 批准号:
    0846898
  • 财政年份:
    2009
  • 资助金额:
    $ 15.11万
  • 项目类别:
    Standard Grant

相似国自然基金

海南广藿香Novel17-GSO1响应p-HBA调控连作障碍的分子机制
  • 批准号:
    82304658
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel-miR-59靶向HMGAs介导儿童早衰症细胞衰老的作用及机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
白术多糖通过novel-mir2双靶向TRADD/MLKL缓解免疫抑制雏鹅的胸腺程序性坏死
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
novel_circ_008138/rno-miR-374-3p/SFRP4调控Wnt信号通路参与先天性肛门直肠畸形发生的分子机制研究
  • 批准号:
    82070530
  • 批准年份:
    2020
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

5T-IV: photoacoustic needle with beacon pulse for ultrasound guided vascular access with Tool-Tip Tracking and Tissue Typing
5T-IV:带有信标脉冲的光声针,用于通过工具提示跟踪和组织分型进行超声引导血管通路
  • 批准号:
    10677283
  • 财政年份:
    2023
  • 资助金额:
    $ 15.11万
  • 项目类别:
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
  • 批准号:
    10582051
  • 财政年份:
    2023
  • 资助金额:
    $ 15.11万
  • 项目类别:
Development of an apoptosis biosensor for monitoring of breast cancer
开发用于监测乳腺癌的细胞凋亡生物传感器
  • 批准号:
    10719415
  • 财政年份:
    2023
  • 资助金额:
    $ 15.11万
  • 项目类别:
Predicting neoadjuvant treatment response of locally advanced rectal cancer using co-registered endo-rectal photoacoustic and ultrasound imaging
使用联合配准直肠内光声和超声成像预测局部晚期直肠癌的新辅助治疗反应
  • 批准号:
    10637693
  • 财政年份:
    2023
  • 资助金额:
    $ 15.11万
  • 项目类别:
Photoacoustic Image Guidance of Hysterectomies
子宫切除术的光声图像指导
  • 批准号:
    10586827
  • 财政年份:
    2023
  • 资助金额:
    $ 15.11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了