SusChEM: Surface Active Site Design for Selective Deoxygenation

SusChEM:用于选择性脱氧的表面活性位点设计

基本信息

  • 批准号:
    1464979
  • 负责人:
  • 金额:
    $ 51.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2019-08-31
  • 项目状态:
    已结题

项目摘要

Many chemical processes require the ability to make or break carbon-oxygen bonds in a compound without affecting other bonds. The conversion of biomass to fuels and chemicals requires carbon-oxygen bond dissociation (or "deoxygenation") reactions to improve the compatibility of biomass-derived compounds with the existing refining infrastructure. Unfortunately, catalysts that are effective for deoxygenation also often catalyze other, undesired reactions that lead to the loss of carbon. The ability to design solid materials that specifically remove oxygen from a feedstock is thus a goal of modern catalysis research. In this project, Dr. J. Will Medlin of the University of Colorado Boulder is investigating how interactions between oxygen-containing reactants on catalyst surfaces can be tuned to allow for specific removal of oxygen from a feedstock. Dr. Medlin is also investigating the role that catalyst nanostructure plays in favoring oxygen removal reactions over those that remove carbon. The project integrates scientific outreach and training within the research program. These outreach activities include summer research opportunities for undergraduate students, as well as expansion of an annual chemistry and chemical engineering "Field Day" activity that is focused on hands-on science experiments for middle school students. With funding from the Chemical Catalysis Program of the Chemistry Division, Dr. J. Will Medlin of the University of Colorado Boulder is developing an understanding of the mechanism for deoxygenation reactions of alcohols on metal surfaces. Selective activation of carbon-oxygen bonds is important in many applications, including the conversion of biomass-derived compounds to fuels and chemicals. It is especially important to identify catalysts that are selective for carbon-oxygen bond activation, since cleavage of carbon-carbon bonds generally results in carbon loss and reduced efficiency. Although certain metal surfaces have been identified as being unusually active and selective for deoxygenation, the relationship between surface properties and deoxygenation performance is not well understood, hampering efforts to design improved catalysts. In this project, Dr. Medlin is employing a combination of experimental studies using model surfaces, density functional theory calculations, and experiments with supported catalysts to systematically investigate factors that have previously been associated with high deoxygenation selectivity. In this project, isotope tracing studies are employed to systematically investigate the mechanism for the critical hydrogen transfer step during deoxygenation. Deoxygenation selectivity and kinetics are measured for a variety of palladium surfaces to identify the geometric structures associated with efficient deoxygenation. The goal of this project is to identify simple catalyst descriptors that can inform design of efficient catalysts. This project emphasizes STEM education through the research training of students across multiple levels, as well as through an annual "Field Day" activity for middle school students organized by Dr. Medlin's group.
许多化学过程需要能够在化合物中形成或破坏碳-氧键而不影响其他键。 将生物质转化为燃料和化学品需要碳-氧键解离(或“脱氧”)反应,以提高生物质衍生化合物与现有炼油基础设施的相容性。 不幸的是,有效脱氧的​​催化剂也常常催化其他不期望的反应,导致碳损失。 因此,设计专门从原料中去除氧气的固体材料的能力是现代催化研究的目标。在该项目中,科罗拉多大学博尔德分校的 J. Will Medlin 博士正在研究如何调整催化剂表面上的含氧反应物之间的相互作用,以实现从原料中特定去除氧。 梅德林博士还在研究催化剂纳米结构在促进除碳反应而不是除碳反应方面所起的作用。该项目将科学推广和培训纳入研究计划。 这些外展活动包括为本科生提供夏季研究机会,以及扩大每年一度的化学和化学工程“实地日”活动,该活动的重点是为中学生进行科学实践实验。 在化学系化学催化项目的资助下,科罗拉多大学博尔德分校的 J. Will Medlin 博士正在深入了解金属表面上醇类脱氧反应的机制。碳-氧键的选择性活化在许多应用中都很重要,包括将生物质衍生的化合物转化为燃料和化学品。 识别对碳-氧键活化具有选择性的催化剂尤其重要,因为碳-碳键的断裂通常会导致碳损失和效率降低。 尽管某些金属表面已被认为对脱氧具有异常活性和选择性,但表面性质和脱氧性能之间的关系尚不清楚,这阻碍了设计改进催化剂的努力。 在该项目中,Medlin 博士结合使用模型表面、密度泛函理论计算和负载催化剂实验的实验研究来系统地研究以前与高脱氧选择性相关的因素。在该项目中,采用同位素示踪研究来系统地研究脱氧过程中关键的氢转移步骤的机制。测量各种钯表面的脱氧选择性和动力学,以确定与有效脱氧相关的几何结构。 该项目的目标是确定简单的催化剂描述符,为高效催化剂的设计提供信息。该项目通过对学生进行多个层次的研究培训以及每年由 Medlin 博士团队为中学生组织的“Field Day”活动来强调 STEM 教育。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Will Medlin其他文献

Reaction paths for hydrodeoxygenation of furfuryl alcohol at TiO2/Pd interfaces
TiO2/Pd 界面糠醇加氢脱氧反应路径
  • DOI:
    10.1016/j.jcat.2019.07.012
  • 发表时间:
    2019-09-01
  • 期刊:
  • 影响因子:
    7.3
  • 作者:
    Shyam Deo;Will Medlin;E. Nikolla;M. Janik
  • 通讯作者:
    M. Janik
Incorporating ScreenCasts into Chemical Engineering Courses
将 ScreenCast 纳入化学工程课程
  • DOI:
    10.18260/1-2--18130
  • 发表时间:
    2011-06-26
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. L. D. Grazia;J. Falconer;G. Nicodemus;Will Medlin
  • 通讯作者:
    Will Medlin

Will Medlin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Will Medlin', 18)}}的其他基金

Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
  • 批准号:
    2349884
  • 财政年份:
    2024
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Continuing Grant
Collaborative Research: ECO-CBET: Coupled homogeneous and heterogeneous processes for an environmentally sustainable lignin-first biorefinery
合作研究:ECO-CBET:环境可持续的木质素优先生物精炼厂的均质和异质耦合工艺
  • 批准号:
    2218958
  • 财政年份:
    2022
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Continuing Grant
EFRI E3P: Hydrogenolysis for upcycling of polyesters and mixed plastics
EFRI E3P:用于聚酯和混合塑料升级改造的氢解
  • 批准号:
    2132033
  • 财政年份:
    2021
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Standard Grant
Catalytic Selectivity Control in Electrochemical Systems using Self-Assembled Monolayers
使用自组装单层膜控制电化学系统中的催化选择性
  • 批准号:
    2004090
  • 财政年份:
    2020
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Standard Grant
Modification of zeolites with organic ligands for improved separations
用有机配体对沸石进行改性以改善分离
  • 批准号:
    1916738
  • 财政年份:
    2019
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Standard Grant
Collaborative Research: Controlling the properties of oxide-encapsulated metals for interfacial catalysis
合作研究:控制氧化物封装金属的界面催化性能
  • 批准号:
    1900183
  • 财政年份:
    2019
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Standard Grant
SusChEM: Collaborative Research: Surface Reaction of Oxygenates on Lewis Acidic Metal Oxides
SusChEM:合作研究:路易斯酸性金属氧化物上氧化物的表面反应
  • 批准号:
    1705500
  • 财政年份:
    2017
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Computationally Guided Design of Multicomponent Materials for Electrocatalytic Cascade Reactions
DMREF/合作研究:用于电催化级联反应的多组分材料的计算引导设计
  • 批准号:
    1436862
  • 财政年份:
    2014
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Standard Grant
Understanding and Controlling Reactivity of Functionalized Alcohols on Metal Surfaces
了解和控制金属表面官能化醇的反应性
  • 批准号:
    1149752
  • 财政年份:
    2012
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Standard Grant
Surface-level investigations of adsorbate-adsorbate interactions on thiolate-modified surfaces
硫醇盐改性表面吸附质-吸附质相互作用的表面研究
  • 批准号:
    1160040
  • 财政年份:
    2012
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Standard Grant

相似国自然基金

双各向异性近零超表面非互易辐射特性机理与调控研究
  • 批准号:
    52306103
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
钛合金表面微区电势差特征促细胞功能表达及其免疫微环境作用机制
  • 批准号:
    32371390
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
表面手性有机框架的设计构筑及手性调控研究
  • 批准号:
    22372030
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
结构重构型动态手性超表面的程序化精确组装及光学响应研究
  • 批准号:
    22305030
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于层级栅格表面液滴自弹跳的受限空间定向相变传热机理
  • 批准号:
    52306076
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Harnessing the Interplay of Morphology, Viscoelasticity, and Surface-Active Agents to Modulate Soft Wetting
职业:利用形态、粘弹性和表面活性剂的相互作用来调节软润湿
  • 批准号:
    2336504
  • 财政年份:
    2024
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Continuing Grant
Surface Engineered and Highly Redox Active Polar Oxide Host Materials Immobilizing Lithium Polysulfides for Long-Life and High-Performance Li-S Batteries
表面工程和高氧化还原活性极性氧化物主体材料固定多硫化锂,用于长寿命和高性能锂硫电池
  • 批准号:
    2427263
  • 财政年份:
    2024
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Standard Grant
ALDH2 inhibitors for the treatment of AUD
ALDH2抑制剂用于治疗AUD
  • 批准号:
    10664502
  • 财政年份:
    2023
  • 资助金额:
    $ 51.88万
  • 项目类别:
Epitope-Based CSP Vaccines Optimized to Achieve Long-Term Sterile Immunity
经过优化的基于表位的 CSP 疫苗可实现长期无菌免疫
  • 批准号:
    10637778
  • 财政年份:
    2023
  • 资助金额:
    $ 51.88万
  • 项目类别:
CAREER: Unraveling the Role of Thin Water Films in Controlling Subsurface Transport of Surface-Active Contaminants across Scales
职业:揭示薄水膜在控制表面活性污染物跨尺度地下传输中的作用
  • 批准号:
    2237015
  • 财政年份:
    2023
  • 资助金额:
    $ 51.88万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了