EAGER-DynamicData: A Hierarchical Approach to Dynamic Big Data Analysis in Power Infrastructure Security

EAGER-DynamicData:电力基础设施安全动态大数据分析的分层方法

基本信息

项目摘要

This research will address a dynamic big data problem that is of urgent national interest: the need for efficient methods to diagnose faults and attacks in critical interconnected infrastructures, such as electricity power networks. Additionally, this project will investigate new methodologies to extract knowledge from the complex streams of data that come from various sensors in infrastructure systems and the models of their behavior. Results and findings in this project will be validated via industry-accredited power system simulators, and will be useful to the power industry in enhancing the safety, stability, and security of essential power infrastructure. This project will promote multi-disciplinary research involving expertise in big data analysis, machine learning, security, power systems, and control systems. This research will provide a powerful bridge between theory and real-world applications while serving as a training platform for a diverse new generation of engineers at the University of California, Riverside, one of America's most ethnically diverse research-intensive institutions. This project will foster the use of multi-resolution data-driven methods for the detection and classification of anomalies in critical dynamical infrastructures, with focus on power networks. This project has three novel, innovative, and potentially transformative technical elements: (1) A comprehensive statistical model, as an alternative to existing physics-based models, using Dynamic Bayesian Networks and Conditional Random Fields to model complex infrastructures subject to failures and attacks; (2) A hierarchical detection and classification method based upon machine learning concepts to tame and leverage the vast amount and diversity of dynamic multi-resolution data collected by spatially distributed sensors; (3) A systematic method to train and inform data-driven methodologies from model-based and analytical knowledge that come from power systems and control theory to build scalable and performing detection and classification mechanisms in power infrastructure security.
这项研究将解决一个具有紧迫国家利益的动态大数据问题:需要有效的方法来诊断关键互连基础设施(例如电力网络)的故障和攻击。此外,该项目将研究新的方法,从来自基础设施系统中各种传感器及其行为模型的复杂数据流中提取知识。该项目的结果和发现将通过行业认可的电力系统模拟器进行验证,并将有助于电力行业增强重要电力基础设施的安全性、稳定性和保障。该项目将促进涉及大数据分析、机器学习、安全、电力系统和控制系统专业知识的多学科研究。这项研究将为理论和现实应用之间架起一座强大的桥梁,同时为加州大学河滨分校(美国种族最多元化的研究密集型机构之一)的新一代多元化工程师提供培训平台。该项目将促进使用多分辨率数据驱动方法对关键动态基础设施中的异常进行检测和分类,重点关注电力网络。该项目具有三个新颖、创新且具有潜在变革性的技术要素:(1)综合统计模型,作为现有基于物理的模型的替代方案,使用动态贝叶斯网络和条件随机场对遭受故障和攻击的复杂基础设施进行建模; (2)基于机器学习概念的分层检测和分类方法,以驯服和利用空间分布式传感器收集的大量和多样性的动态多分辨率数据; (3) 一种系统方法,用于根据来自电力系统和控制理论的基于模型和分析知识来训练和告知数据驱动方法,以在电力基础设施安全中构建可扩展且执行的检测和分类机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amir-Hamed Mohsenian-Rad其他文献

Amir-Hamed Mohsenian-Rad的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amir-Hamed Mohsenian-Rad', 18)}}的其他基金

Collaborative Research: Learning for Safe and Secure Operation of Grid-Edge Resources
协作研究:学习电网边缘资源的安全可靠运行
  • 批准号:
    2330155
  • 财政年份:
    2024
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
RAPID/Collaborative Research: Linking Household and Infrastructure Data to Understand the Impacts of Winter Storm Uri in Texas
快速/协作研究:将家庭和基础设施数据联系起来,了解德克萨斯州冬季风暴乌里的影响
  • 批准号:
    2141203
  • 财政年份:
    2021
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Understanding the Complex Impact of Convergence Bids on Wholesale Electricity Markets: Current and Future Implications
了解融合投标对批发电力市场的复杂影响:当前和未来的影响
  • 批准号:
    1711944
  • 财政年份:
    2017
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Collaborative Research: A Unified Approach to Quantifying Market Power in the Future Grid
协作研究:量化未来电网市场力量的统一方法
  • 批准号:
    1307756
  • 财政年份:
    2013
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
CSR: Small:Collaborative Research: Data Center Demand Response: Coordinating the Cloud and the Smart Grid
CSR:小型:协作研究:数据中心需求响应:协调云和智能电网
  • 批准号:
    1319798
  • 财政年份:
    2013
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
CAREER: Self-Organizing Demand Side Management for Smart Grid: A Dynamic Game-Theoretic Framework
职业:智能电网的自组织需求侧管理:动态博弈论框架
  • 批准号:
    1149735
  • 财政年份:
    2012
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
CAREER: Self-Organizing Demand Side Management for Smart Grid: A Dynamic Game-Theoretic Framework
职业:智能电网的自组织需求侧管理:动态博弈论框架
  • 批准号:
    1253516
  • 财政年份:
    2012
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant

相似国自然基金

面向数据中心动态混合流量的网络传输优化关键技术研究
  • 批准号:
    62302472
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于数据挖掘和强化学习的动态随机车辆路径优化问题研究
  • 批准号:
    72301109
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于数据同化和动态模型库的海洋核动力装置故障诊断与自适应控制研究
  • 批准号:
    12305185
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于动态宽度与深度学习的多源异构数据下高山峡谷区链生地质灾害智能识别研究
  • 批准号:
    42371356
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
基于自适应动态规划的非线性系统数据驱动最优输出调节
  • 批准号:
    62373090
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
  • 批准号:
    1833553
  • 财政年份:
    2018
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
  • 批准号:
    1833553
  • 财政年份:
    2018
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER-DynamicData: Machine Intelligence for Dynamic Data-Driven Morphing of Nodal Demand in Smart Energy Systems
合作研究:EAGER-DynamicData:智能能源系统中节点需求动态数据驱动变形的机器智能
  • 批准号:
    1462393
  • 财政年份:
    2015
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Collaborative: Exploiting the Dynamically Architectural Configurability for Compressed Sensing
EAGER-DynamicData:协作:利用压缩感知的动态架构可配置性
  • 批准号:
    1462473
  • 财政年份:
    2015
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Judicious Censoring, Random Sketching, and Efficient Validate for Learning Patterns from Dynamically-Changing and Large-Scale Data Sets
EAGER-DynamicData:明智的审查、随机草图和高效验证,用于从动态变化的大规模数据集中学习模式
  • 批准号:
    1500713
  • 财政年份:
    2015
  • 资助金额:
    $ 18.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了