EAGER-DynamicData: Transforming Wildfire Detection and Prediction using New and Underused Sensor and Data Sources Integrated with Modeling

EAGER-DynamicData:使用新的和未充分利用的传感器以及与建模集成的数据源来改变野火检测和预测

基本信息

  • 批准号:
    1462247
  • 负责人:
  • 金额:
    $ 10万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

Wildland fires are a costly natural hazard. Newer modeling systems have combined numerical weather prediction models with the traditional tools used to model fire behavior, making them more capable of realistically modeling how fires unfold, however, applying them to accurately anticipate a fire?s growth is a difficult forecasting challenge. The principal challenges are that errors accumulate as the accuracy of weather forecasts decreases with time and that some processes cannot be anticipated by the model such as the lofting of burning embers ahead of the fire (potentially starting new fires) and firefighting. The team?s recent work has combined theCoupled Atmosphere-Wildland Fire Environment (CAWFETM) weather?fire behavior modeling system with satellite-based fire detection data from the Visible and Infrared Imaging Radiometer Suite (VIIRS) instrument to ignite fires already in progress, allowing an accurate forecast of fire growth for the next 12-24 hours; sequences of these simulations can maintain a reasonable forecast of fire growth from the time the satellite detects it until it is extinguished. The remaining challenges limiting the forecast skill are common to traditional approaches to modeling complex, nonlinear natural systems and include accumulating error and optimally exploiting all available data sources. The team will investigate how more tightly integrating new and underused sensor and data sources with the modeling could potentially transform both wildfire detection and prediction. Advances will be integrated into the team?s work transitioning the system into operations, benefiting society with earlier wildfire detection, faster response, and better fire forecasts.The goal is to develop innovative Dynamic Data System techniques that improve wildfire detection and growth forecasting. The work will address three objectives, 1) develop and apply algorithms (steered by other data) to distill new and existing (but underutilized) sources of data on wildfire detection and mapping, 2) develop and apply algorithms to integrate asynchronousdata on wildfire detection and monitoring with coupled weather?wildland fire models, and 3) measure the improvement in wildfire detection time and forecasted fire growth. The methods include creating an adaptive control system for initiating forecasts based on the arrival of new data; allowing sensors to inform algorithms where to look in other underutilized datasets; creatingapproaches for intelligent, iterative processing of large datasets; and using model forecasts to drive these intelligent searches. The techniques could have broad application across other nonlinear systems that are currently done in a traditional manner with rigorous scheduling of routine, repeated modeling relying on fixed detection algorithms and regular, periodic input dataarrival.
荒地火灾是一种代价高昂的自然灾害。较新的建模系统将数值天气预报模型与用于模拟火灾行为的传统工具相结合,使它们更能够真实地模拟火灾如何展开,但是,应用它们来准确预测火灾的发展是一项艰巨的预测挑战。主要的挑战是,随着天气预报的准确性随着时间的推移而降低,误差会累积,并且模型无法预测某些过程,例如在火灾前燃烧余烬的升起(可能引发新的火灾)和消防。该团队最近的工作将大气-荒地火灾环境耦合 (CAWFETM) 天气火灾行为建模系统与来自可见光和红外成像辐射计套件 (VIIRS) 仪器的卫星火灾探测数据相结合,以点燃已经发生的火灾,从而允许准确预测未来 12-24 小时的火势蔓延情况;这些模拟的序列可以对从卫星检测到火灾直至火灾被扑灭的火灾蔓延进行合理的预测。限制预测技能的其余挑战对于复杂、非线性自然系统建模的传统方法来说是常见的,包括累积误差和优化利用所有可用数据源。该团队将研究如何将新的和未充分利用的传感器和数据源与建模更紧密地结合起来,从而可能改变野火检测和预测。进步将被整合到团队的工作中,将系统转变为运营,通过更早的野火检测、更快的响应和更好的火灾预测来造福社会。目标是开发创新的动态数据系统技术,以改进野火检测和增长预测。这项工作将实现三个目标,1)开发和应用算法(由其他数据引导)来提取有关野火检测和绘图的新的和现有的(但未充分利用的)数据源,2)开发和应用算法来集成野火检测和绘图的异步数据。结合天气与野火模型进行监测,3) 衡量野火检测时间和预测火势增长的改进情况。这些方法包括创建一个自适应控制系统,用于根据新数据的到来启动预测;允许传感器通知算法在其他未充分利用的数据集中查找的位置;创建对大型数据集进行智能、迭代处理的方法;并使用模型预测来驱动这些智能搜索。这些技术可以在其他非线性系统中广泛应用,这些系统目前以传统方式完成,通过严格的例程调度、依赖于固定检测算法和定期、周期性输入数据到达的重复建模。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Janice Coen其他文献

FLAME 2: FIRE DETECTION AND MODELING: AERIAL MULTI-SPECTRAL IMAGE DATASET
FLAME 2:火灾探测和建模:航空多光谱图像数据集
  • DOI:
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bryce Hopkins;Leo O'Neill, Fatemeh Afghah;Abolfazl Razi;Eric Rowell;Adam Watts;Peter Fule;Janice Coen
  • 通讯作者:
    Janice Coen
Wildland Fire Detection and Monitoring Using a Drone-Collected RGB/IR Image Dataset
使用无人机收集的 RGB/IR 图像数据集进行荒地火灾探测和监控
  • DOI:
    10.1109/access.2022.3222805
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Xiwen Chen;Bryce Hopkins;Hao Wang;Leo O’Neill;Fatemeh Afghah;A. Razi;Peter Fulé;Janice Coen;Eric Rowell;Adam Watts
  • 通讯作者:
    Adam Watts
FLAME 2: FIRE DETECTION AND MODELING: AERIAL MULTI-SPECTRAL IMAGE DATASET
FLAME 2:火灾探测和建模:航空多光谱图像数据集
  • DOI:
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bryce Hopkins;Leo O'Neill, Fatemeh Afghah;Abolfazl Razi;Eric Rowell;Adam Watts;Peter Fule;Janice Coen
  • 通讯作者:
    Janice Coen

Janice Coen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Janice Coen', 18)}}的其他基金

Collaborative Research:CPS:Medium:SMAC-FIRE: Closed-Loop Sensing, Modeling and Communications for WildFIRE
合作研究:CPS:中:SMAC-FIRE:野火的闭环传感、建模和通信
  • 批准号:
    2209994
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Wildland Fire Observation, Management, and Evacuation using Intelligent Collaborative Flying and Ground Systems
协作研究:CPS:中:使用智能协作飞行和地面系统进行荒地火灾观测、管理和疏散
  • 批准号:
    2038759
  • 财政年份:
    2021
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: CDI-Type II--The Open Wildland Fire Modeling E-community: A Virtual Organization Accelerating Research, Education, and Fire Management Technology
合作研究:CDI-Type II——开放荒地火灾建模电子社区:一个加速研究、教育和火灾管理技术的虚拟组织
  • 批准号:
    0835598
  • 财政年份:
    2008
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
ITR/NGS: Collaborative Research: DDDAS: Data-Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理的数据动态模拟
  • 批准号:
    0324910
  • 财政年份:
    2003
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant

相似国自然基金

面向数据中心动态混合流量的网络传输优化关键技术研究
  • 批准号:
    62302472
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于动态宽度与深度学习的多源异构数据下高山峡谷区链生地质灾害智能识别研究
  • 批准号:
    42371356
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
基于数据挖掘和强化学习的动态随机车辆路径优化问题研究
  • 批准号:
    72301109
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于数据同化和动态模型库的海洋核动力装置故障诊断与自适应控制研究
  • 批准号:
    12305185
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于自适应动态规划的非线性系统数据驱动最优输出调节
  • 批准号:
    62373090
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
  • 批准号:
    1833553
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Subspace Learning From Binary Sensing
EAGER-DynamicData:从二进制感知中学习子空间
  • 批准号:
    1833553
  • 财政年份:
    2018
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER-DynamicData: Machine Intelligence for Dynamic Data-Driven Morphing of Nodal Demand in Smart Energy Systems
合作研究:EAGER-DynamicData:智能能源系统中节点需求动态数据驱动变形的机器智能
  • 批准号:
    1462393
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Collaborative: Exploiting the Dynamically Architectural Configurability for Compressed Sensing
EAGER-DynamicData:协作:利用压缩感知的动态架构可配置性
  • 批准号:
    1462473
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Judicious Censoring, Random Sketching, and Efficient Validate for Learning Patterns from Dynamically-Changing and Large-Scale Data Sets
EAGER-DynamicData:明智的审查、随机草图和高效验证,用于从动态变化的大规模数据集中学习模式
  • 批准号:
    1500713
  • 财政年份:
    2015
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了