Collaborative Research: On the Origin of Atomic Layer Deposition Enhanced Activity and Stability of Nanostructured Cathodes for Intermediate-temperature Solid Oxide Fuel Cells

合作研究:中温固体氧化物燃料电池纳米结构阴极的原子层沉积增强活性和稳定性的起源

基本信息

  • 批准号:
    1464111
  • 负责人:
  • 金额:
    $ 18.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

NON-TECHNICAL DESCRIPTION: In this collaborative project supported by the Ceramics Program in the Division of Materials Research, Professor Kevin Huang and Professor Xinhua Liang are developing highly active and stable nanostructured cathodes for intermediate-temperature solid oxide fuel cells (IT-SOFCs). IT-SOFCs are a commercially viable high-efficiency and low-emission power product with a great potential to replace conventional internal combustion engines. The current cathodes for IT-SOFCs are nanostructured with high catalytic activity, but are unfortunately unstable, gradually losing their activity during operation. This project focuses on stabilizing nanostructured cathodes with atomic layer deposition (ALD) and understanding the reason behind why stability and activity of nanostructured cathodes are significantly enhanced by the ALD process. The fundamental knowledge gained from this project is expected to contribute to the understanding of the activity-stability dilemma observed in the catalysis community and play a significant role in developing new active and stable cathodes for commercial IT-SOFCs. The project supports one female graduate student and one minority undergraduate student.TECHNICAL DETAILS: A key to the success of IT-SOFCs is to develop highly active and stable cathodes. The current nanostructured active cathodes are unstable at elevated temperatures. This project is aimed at developing active and stable nanostructured cathodes and investigating the fundamental science underpinning the enhanced catalytic activity and stability through an integrated "theoretical hypothesis" and "experimental validation" approach. A multifunctional defect-chemistry model entailing nanoscale porosity, mixed oxide-ionic and electronic conductivity, Sr-segregation suppression and morphological stabilization is being investigated as the theoretical basis. A suite of advanced in situ, in operando and ex situ surface analysis techniques is being utilized to systematically probe the profiles of chemical and electronic states and surface/sub-surface phase and morphology evolutions of well-defined epitaxial heterostructures to gather key experimental evidence for validating and/or modifying the model. The electrocatalytic charge-transport mechanisms are also being investigated on patterned electrode thin-film structures to collect the individualized electrochemical properties and correlate them with the surface chemistry results. Both graduate and undergraduate students including members of minority and other underrepresented groups play an active role in this research through clearly identified and focused research projects. The importance and potential impact of the project are being disseminated to the general public via special outreach programs at USC and Missouri S&T. A new course is being created for graduate students at USC. A joint educational program with Benedict College, a historically black college, has been previously established with the goal to promote education and workforce development for underrepresented students.
非技术描述:在这个由材料研究部陶瓷项目支持的合作项目中,黄凯文教授和梁新华教授正在开发用于中温固体氧化物燃料电池(IT-SOFC)的高活性和稳定的纳米结构阴极。 IT-SOFC 是一种商业上可行的高效低排放电力产品,具有替代传统内燃机的巨大潜力。目前IT-SOFC的阴极是纳米结构的,具有高催化活性,但不幸的是不稳定,在运行过程中逐渐失去活性。该项目的重点是通过原子层沉积 (ALD) 稳定纳米结构阴极,并了解 ALD 工艺显着增强纳米结构阴极稳定性和活性的原因。从该项目中获得的基础知识预计将有助于理解催化界观察到的活性-稳定性困境,并在开发商业 IT-SOFC 的新型活性和稳定阴极方面发挥重要作用。该项目支持一名女研究生和一名少数民族本科生。技术细节:IT-SOFC 成功的关键是开发高活性和稳定的阴极。目前的纳米结构活性阴极在高温下不稳定。该项目旨在开发活性和稳定的纳米结构阴极,并通过综合的“理论假设”和“实验验证”方法研究支撑增强催化活性和稳定性的基础科学。作为理论基础,正在研究一种多功能缺陷化学模型,该模型涉及纳米级孔隙度、混合氧化物离子和电子电导率、Sr 偏析抑制和形态稳定。一套先进的原位、操作和非原位表面分析技术被用来系统地探测化学和电子态的分布以及明确的外延异质结构的表面/亚表面相和形态演化,以收集关键的实验证据验证和/或修改模型。还在图案化电极薄膜结构上研究电催化电荷传输机制,以收集个性化的电化学特性并将其与表面化学结果相关联。研究生和本科生,包括少数族裔和其他代表性不足的群体,通过明确确定和重点突出的研究项目,在这项研究中发挥着积极作用。该项目的重要性和潜在影响正在通过南加州大学和密苏里科技大学的特别外展计划向公众传播。南加州大学正在为研究生开设一门新课程。此前已与历史悠久的黑人学院本尼迪克特学院建立了一个联合教育项目,旨在促进代表性不足的学生的教育和劳动力发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xinhua Liang其他文献

Low-temperature atomic layer deposition of ZnO films on particles in a fluidized bed reactor
流化床反应器中颗粒上 ZnO 薄膜的低温原子层沉积
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. King;Xinhua Liang;Peng Li;A. Weimer
  • 通讯作者:
    A. Weimer
Long noncoding RNA HAS2-AS1 mediates hypoxia-induced invasiveness of oral squamous cell carcinoma.
长链非编码 RNA HAS2-AS1 介导缺氧诱导的口腔鳞状细胞癌侵袭性。
  • DOI:
    10.1002/mc.22674
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Guiquan Zhu;Shaoxin Wang;Jin Chen;Zhaohui Wang;Xinhua Liang;Xiaoyi Wang;Jian Jiang;Jinyi Lang;Ling Li
  • 通讯作者:
    Ling Li
Enhanced stability of Fe-modified CuO-ZnO-ZrO2-Al2O3/HZSM-5 bifunctional catalysts for dimethyl ether synthesis from CO2 hydrogenation
Fe修饰的CuO-ZnO-ZrO2-Al2O3/HZSM-5双功能催化剂提高CO2加氢合成二甲醚的稳定性
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiao;Shoujie Ren;Baitang Jin;Shiguang Li;Miao Yu;Xinhua Liang
  • 通讯作者:
    Xinhua Liang
Small extracellular vesicles containing miR-192/215 mediate hypoxia-induced cancer-associated fibroblast development in head and neck squamous cell carcinoma.
含有 miR-192/215 的小细胞外囊泡介导头颈鳞状细胞癌中缺氧诱导的癌症相关成纤维细胞发育。
  • DOI:
    10.1016/j.canlet.2021.01.006
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    9.7
  • 作者:
    Guiquan Zhu;Bangrong Cao;Xinhua Liang;Longjiang Li;Yaying Hao;Wanrong Meng;Chuanshi He;Linlin Wang;Ling Li
  • 通讯作者:
    Ling Li
Screening diagnostic biomarkers of OSCC via an LCM-based proteomic approach
通过基于 LCM 的蛋白质组学方法筛选 OSCC 的诊断生物标志物
  • DOI:
    10.3892/or.2018.6610
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Ruinan Wang;Yao Yuan;Yuqiao Zhou;Dunfang Zhang;Lewei Zhang;Xin Zeng;Ning Ji;Min Zhou;Xinhua Liang;Yu Chen;Ning Geng;Jing Li;Qianming Chen
  • 通讯作者:
    Qianming Chen

Xinhua Liang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xinhua Liang', 18)}}的其他基金

Highly Selective, Active, and Stable Metal Nanoparticle Catalysts with Ultra-Thin Porous Ceramic Shells for Size-Selective Chemical Reactions
高选择性、活性和稳定的金属纳米粒子催化剂,具有超薄多孔陶瓷壳,用于尺寸选择性化学反应
  • 批准号:
    2306177
  • 财政年份:
    2022
  • 资助金额:
    $ 18.78万
  • 项目类别:
    Standard Grant
Highly Selective, Active, and Stable Metal Nanoparticle Catalysts with Ultra-Thin Porous Ceramic Shells for Size-Selective Chemical Reactions
高选择性、活性和稳定的金属纳米粒子催化剂,具有超薄多孔陶瓷壳,用于尺寸选择性化学反应
  • 批准号:
    1803812
  • 财政年份:
    2018
  • 资助金额:
    $ 18.78万
  • 项目类别:
    Standard Grant
Collaborative Research: Advanced Zeolite-Composite Adsorbents with Fine-Tuned Pore Sizes for Molecular Sieving Separations
合作研究:用于分子筛分离的具有微调孔径的先进沸石复合吸附剂
  • 批准号:
    1402122
  • 财政年份:
    2014
  • 资助金额:
    $ 18.78万
  • 项目类别:
    Standard Grant

相似国自然基金

人胚外中胚层的发育起源和特化动态的研究
  • 批准号:
    32360177
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
拟南芥重复起源新基因的演化与功能研究
  • 批准号:
    32360065
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
人类从头起源新基因在肿瘤发生中的机制研究
  • 批准号:
    32300510
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
唇足纲物种特异性毒素新基因的起源及其功能演化研究
  • 批准号:
    32370437
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
锌黄锡矿的晶界演化机制及晶界复合起源研究
  • 批准号:
    62304078
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: RESEARCH-PGR: Unraveling the origin of vegetative desiccation tolerance in vascular plants
合作研究:RESEARCH-PGR:揭示维管植物营养干燥耐受性的起源
  • 批准号:
    2243690
  • 财政年份:
    2023
  • 资助金额:
    $ 18.78万
  • 项目类别:
    Standard Grant
Collaborative Research: RESEARCH-PGR: Unraveling the origin of vegetative desiccation tolerance in vascular plants
合作研究:RESEARCH-PGR:揭示维管植物营养干燥耐受性的起源
  • 批准号:
    2243691
  • 财政年份:
    2023
  • 资助金额:
    $ 18.78万
  • 项目类别:
    Standard Grant
Core B: B-HEARD Core
核心 B:B-HEARD 核心
  • 批准号:
    10555691
  • 财政年份:
    2023
  • 资助金额:
    $ 18.78万
  • 项目类别:
Michigan Emergency Department Improvement Collaborative AltERnaTives to admission for Pulmonary Embolism (MEDIC ALERT PE) Study
密歇根急诊科改进合作入院肺栓塞 (MEDIC ALERT PE) 研究
  • 批准号:
    10584217
  • 财政年份:
    2023
  • 资助金额:
    $ 18.78万
  • 项目类别:
Collaborative Research: Resolving the Origin of the Jurassic Quiet Zone
合作研究:解决侏罗纪安静区的起源
  • 批准号:
    2221815
  • 财政年份:
    2023
  • 资助金额:
    $ 18.78万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了