A Mathematical-Experimental Strategy to Discern the Molecular Basis of "Successful Mucus"
辨别“成功粘液”分子基础的数学实验策略
基本信息
- 批准号:1462992
- 负责人:
- 金额:$ 96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In human airways, the mucus barrier is the front line of defense whereas the immune system is secondary. "Successful mucus" efficiently traps invasive cargo (pathogens and particulates) and continuously clears mucus and cargo from the airways to the larynx where it is swallowed to the gut and chemically disarmed before penetration of the mucus barrier, preventing exposure to cells or the blood stream. Many diseases and pathologies are now associated with "unsuccessful mucus," from genetic diseases like cystic fibrosis to acquired conditions such as chronic obstructive pulmonary disease (COPD). Mucus has become the miner's canary of lung health. The experimental-mathematical projects outlined in this research present a strategy to replace quality-of-life metrics of lung disorders with rigorous, robust scientific metrics that integrate novel experimental technique with the mathematics of data analytics, model selection, and predictive computation. These advances promise a new standard for mucus biology, with the potential to transform clinical practice from patient symptoms to preemptive monitoring and assessment of mucus transport properties, to identification of likely sources of success and failure, and to test impact and duration of therapeutics. The education and training of undergraduates, graduate students, and postdoctoral scholars in the integration of knowledge and techniques from biology, biophysics, applied mathematics, statistics, and medicine contributes to the enrichment of all disciplines and fields, and furthermore to the future generation of researchers and practitioners in academia and the public and private sector. Mucus in every organ has a baseline composition (a spectrum of mucin macromolecules, proteins, electrolytes, and water) that is reproducible in cell cultures, and then a host of "living-induced" molecular species (pathogens and by-products, immune response agents, DNA from dead cells, and substances from environmental and lifestyle factors). This molecular composition conveys to healthy mucus the ability to impede the diffusion of species from nanometer to micron size, and the ability to be activated (thereby cleared) down to pico-Newton forces of single cilia. All particles tracked via microscopy in mucus diffuse "non-normally" and the statistics of their diffusion varies with particle size and surface chemistry; all rheology data point to nonlinear viscoelastic behavior that differs depending on the frequency, lengthscale, and stress level of the propulsion mechanisms in the lung. This striking capacity of successful mucus to respond simultaneously yet differently to the diversity of insults and to its clearance by cilia and air drag has confounded the science of mucus biology. Consequently, there has been no assessment standard of transport properties for mucus, no conclusive test for successful mucus, no understanding of what molecular species or tandem species determine mucus success or failure in either transport property, and no rigorous basis to test potential remedies to reinstate healthy transport properties. In this project, experimental techniques will be explored to decompose mucus with respect to its molecular basis, with top-down deconstruction of clinical mucus into baseline and living-induced components, and bottom-up reconstruction from a sterile cell culture baseline superimposed with controlled living-induced components. Mathematical techniques will be developed to assess diffusive and viscoelastic properties of physiological relevance over this entire mucus sample space, including strategies to resolve open mathematical questions about anomalous diffusion and nonlinear viscoelasticity.
在人类呼吸道中,粘液屏障是第一道防线,而“成功的粘液”是次要的,可以有效地捕获侵入性物质(病原体和颗粒物),并持续清除呼吸道中的粘液和物质,并被吞咽到喉部。在穿透粘液屏障之前,肠道会被化学解除武装,从而防止暴露于细胞或血流中,现在许多疾病和病理都与“不成功的粘液”有关。囊性纤维化等遗传性疾病以及慢性阻塞性肺病 (COPD) 等后天性疾病已成为矿工肺部健康的金丝雀。本研究中概述的实验数学项目提出了一种替代肺部生活质量指标的策略。这些进步为粘液生物学提供了新的标准,有可能将临床实践从患者症状转变为疾病。预先监测和评估粘液运输特性,确定成功和失败的可能来源,并测试治疗的影响和持续时间对本科生、研究生和博士后学者进行生物学知识和技术整合的教育和培训。 、生物物理学、应用数学、统计学和医学有助于丰富所有学科和领域,此外还有助于学术界以及公共和私营部门的下一代研究人员和从业者每个器官的粘液都有一个基线成分。 (一系列粘蛋白大分子、蛋白质、电解质和水)可在细胞培养物中复制,然后是大量“活诱导”分子种类(病原体和副产品、免疫反应剂、死细胞的 DNA 和这种分子组合物向健康的粘液传递了阻止从纳米到微米大小的物质扩散的能力,以及被激活(从而清除)到皮牛顿力的能力。通过显微镜追踪的所有颗粒在粘液中“非正常”扩散,并且其扩散的统计数据随颗粒尺寸和表面化学变化而变化;所有流变学数据都表明非线性粘弹性行为随频率、长度尺度和应力水平的不同而变化。成功的粘液对各种损伤以及纤毛和空气阻力的清除做出不同反应的惊人能力同时混淆了粘液生物学科学。测试中,没有粘液传输特性的评估标准,没有成功粘液的结论性测试,不了解哪些分子种类或串联种类决定粘液传输特性的成功或失败,也没有严格的基础来测试恢复潜在补救措施在该项目中,将探索实验技术来分解粘液的分子基础,将临床粘液自上而下地解构为基线和活体诱导成分,并从无菌细胞培养基线进行自下而上的重建。叠加有将开发数学技术来评估整个粘液样本空间的生理相关性的扩散和粘弹性特性,包括解决有关异常扩散和非线性粘弹性的开放数学问题的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
M Forest其他文献
M Forest的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('M Forest', 18)}}的其他基金
RAPID: A Lung Mucus Strategy for COVID-19 Viral Protection
RAPID:针对 COVID-19 病毒防护的肺粘液策略
- 批准号:
2028758 - 财政年份:2020
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
Statistical and Applied Mathematical Sciences Institute
统计与应用数学科学研究所
- 批准号:
1929298 - 财政年份:2020
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
Collaborative Research: Computational Modeling of How Living Cells Utilize Liquid-Liquid Phase Separation to Organize Chemical Compartments
合作研究:活细胞如何利用液-液相分离来组织化学区室的计算模型
- 批准号:
1816630 - 财政年份:2018
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
Statistical and Applied Mathematical Sciences Institute
统计与应用数学科学研究所
- 批准号:
1638521 - 财政年份:2017
- 资助金额:
$ 96万 - 项目类别:
Continuing Grant
Collaborative Research: Kinetic to Continuum Modeling of Active Anisotropic Fluids
合作研究:活性各向异性流体的动力学到连续体建模
- 批准号:
1517274 - 财政年份:2015
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
Collaborative Research: A Molecular-to-Continuum, Data-Driven Strategy for Mucus Transport Modeling
协作研究:粘液运输建模的分子到连续体、数据驱动策略
- 批准号:
1412844 - 财政年份:2014
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
Collaborative Research on Mathematical Constructs for Multiphase Complex Fluids
多相复杂流体数学结构的合作研究
- 批准号:
0908423 - 财政年份:2009
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
Collaborative Research: Collaborative Proposal for Mathematics & Computation of Nano-Composite Flows & Properties
合作研究:数学合作提案
- 批准号:
0604891 - 财政年份:2006
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
Multi-scale Phenomena in Macromolecular Fluids and Nano-Composite Materials
高分子流体和纳米复合材料的多尺度现象
- 批准号:
0308019 - 财政年份:2003
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
US-UAE Cooperative Research: Integrable Systems and Applications to Optical Pulse Propagation
美国-阿联酋合作研究:可积系统及其在光脉冲传播中的应用
- 批准号:
0096938 - 财政年份:2001
- 资助金额:
$ 96万 - 项目类别:
Standard Grant
相似国自然基金
PKM2-SREBP调控光感受器-RPE糖脂代谢耦联对话在实验性近视模型中的机制研究
- 批准号:82301240
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
LL-37基于线粒体动力学和代谢重编程调节小胶质细胞极化改善实验性自身免疫性脑脊髓炎的作用及机制研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
实验性自身免疫性脑脊髓炎中巨噬细胞调节骨髓造血的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
m6A去甲基化酶Fto在实验性氟中毒突触可塑性损伤中的保护作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:35 万元
- 项目类别:地区科学基金项目
基于空间转录组技术筛选皮肤损伤时间特异性生物学指标及构建智能化损伤时间准确推断模型的实验性研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
Predictive modeling of mammalian cell fate transitions over time and space with single-cell genomics
利用单细胞基因组学预测哺乳动物细胞命运随时间和空间转变的模型
- 批准号:
10572855 - 财政年份:2023
- 资助金额:
$ 96万 - 项目类别:
Systems Approaches to Understanding the Impact of Cell-Cell Fusion on Therapeutic Resistance
了解细胞间融合对治疗耐药性影响的系统方法
- 批准号:
10607123 - 财政年份:2023
- 资助金额:
$ 96万 - 项目类别:
Bacterial Adhesion Inhibition and Biofilm Disruption by Adaptive Piezoelectric Biomaterial
自适应压电生物材料抑制细菌粘附和破坏生物膜
- 批准号:
10668030 - 财政年份:2023
- 资助金额:
$ 96万 - 项目类别:
Real-time predictive modeling for public health departments to control infectious diseases
公共卫生部门控制传染病的实时预测模型
- 批准号:
10878316 - 财政年份:2023
- 资助金额:
$ 96万 - 项目类别: